

Overview of NFDRS2016

W. MATT JOLLY, USFS, RMRS, MISSOULA FIRE SCIENCES LABORATORY NATIONAL NFDRS 2016 ROLLOUT WORKSHOP 28 APR 2018

Outline

Introduce the NFDRS changes

- Talk about some elements relating to model comparison and evaluation
- Look at the future
- Why we should care.....

A horse walks into a bar... The bartender says, "Hey." The horse replies, "Sure."

Fire weather conditions are changing

Α

COMMUNICATIONS

NATURE COMMUNICATIONS | ARTICLE

Home About the journal Authors and referees Browse archive Search

ome ⊨ archive by date ⊨ july ⊨ full text

< 8

Climate-induced variations in global wildfire danger from 1979 to 2013

W. Matt Jolly, Mark A. Cochrane, Patrick H. Freeborn, Zachary A. Holden, Timothy J. Brown Grant J. Williamson & David M. J. S. Bowman

Affiliations | Contributions | Corresponding autho

Vature Communications 6, Article number: 7537 | doi:10.1038/ncomms8537 Received 24 November 2014 | Accepted 15 May 2015 | Published 14.1ml/ 2015

Fire weather seasons have lengthened across 29.6M km2 (25.3%) of the Earth's vegetated surface. (Jolly et al 2015, Nature Communications)

Climatic changes account for 85% of the burned area variations across Western National Forests (Jolly et al, unpublished)

Western US National Forests

Philosophy

► Two desires for today:

Learn: About the new model and how to use the tools to explore it

Commit: To be a part of a learning community

- A learning model:
- 1. Saturate
- 2. Incubate
- 3. Illuminate

Fire Danger Rating: The Next 20 Years, 1987 John E. Deeming

Abstract: For the next 10 years, few changes will be made to the fire-danger rating system. During that time, the focus will be on the automation of weather observing systems and the streamlining of the computation and display of ratings. The time horizon for projecting fire danger will be pushed to 30 days by the late 1990's. A close alignment of the fire-danger rating system with the fire-behavior and fire-planning systems will occur with the release of the second-generation fire model in the late 1990's. Improved utilization of all of these systems will be delayed until more structured approaches to decision making are adopted by management. By 2007, expert systems utilizing real-time direct and remotely sensed weather and fuel moisture data will be on line.

https://www.fs.usda.gov/treesearch/pubs/28099

Four guidelines of a fire danger rating system

To develop consistency among protection agencies, the National Fire Danger Rating System (NFDRS) was developed in the early 70's. It was designed around four basic guidelines. The research charter said the National Fire Danger Rating System would be:

A. Scientifically based.

- **B.** Adaptable to the needs of local managers.
- **c**. Applicable anywhere in the country.
- **D.** Reasonably inexpensive to operate.

Components of a fire danger rating system

Modular: New science can easily be added

- Integrative: Fire danger indices integrated over both space (FDRA) and multiple time horizons (today -> season -> interannual)
- Generalized: Same system performs across a range of climates. It should work everywhere.
- Applicable: Normalize index scales and apply indices across a spectrum of fire management decisions. Maintain a 'common language' across all agencies.

https://kahoot.it

Structure of the 1978/88 National Fire Danger Rating System

What are the required user inputs to NFDRS?

Daily?

Seasonal?

Case for Change

Prepares NFDRS to integrate into future uses of weather data

• Described in the FENC/CEFA RAWS Network Analysis of 2011, including increasing use of gridded data in analysis products like NFDRS

Preparing to do this for over a decade:

- Installing solar radiation sensors on RAWS
- Evaluating new model performance
- Lessons learned in extensive analysis in Fire Danger Operating Plans correlating NFDRS Indices, fuel models and fire activity.

Outline

Major Changes

- Fuel moisture models and fuel models
- Minor Changes
 - Drought fuel loading and Herbaceous curing
 - Other fuel model and site description changes
- Simplifications and parameter elimination summary

New live fuel moisture model

What are the current inputs / drivers of live fuel moisture models in NFDRS 78/88?

New Live Fuel Moisture Model

- Live fuel moisture model in the 1978 / 1988 NFDRS is acknowledged as the weakest sub-model in NFDRS. The original NFDRS developers intended to replace it at the earliest possible convenience.
- The new herbaceous and woody fuel moisture calculations will use the Growing Season Index and it will transform that index into to live fuel moisture values

Growing Season Index (GSI)

- Growing Season Index GSI is a meteorologicallybased, generalized phenology model
- It requires no constant human intervention yet accurately reflects within season and between season live fuel conditions from daily weather observations.
 - Predicts green-up date and shows herbaceous curing
 - Automatically integrates freezing and dormancy
 - Eliminates the need for Climate Class, Green-up date, freeze date, season codes and greenness factors (88 system)

Jolly, W.M., Nemani, R., Running, S.W., 2005. A generalized, bioclimatic index to predict foliar phenology in response to climate. Global Change Biology 11, 619-632.

Growing Season Index (GSI) ...

- Calculated DAILY
- GSI has 3 inputs:
 - 24 hour minimum temperature (TMIN)
 - Vapor pressure deficit (VPD)
 - Calculated from relative humidity and air temperatures
 - RH = (VPact / VPsat) * 100
 - VPD = VPsat Vpact
 - Can be calculated from either 24 hour maximum or 24 hour average temperature (VPDmax and VPDavg, respectively)
 - Photoperiod or Daylength
 - Calculated from station latitude and yearday

The Growing Season Index

Growing Season Index (iGSI) = iTmin * iPhoto * iVPD

The final index varies continuously from zero (limiting) to one (unconstrained)

Example weather inputs to GSI

Minimum temperature

Vapor pressure deficit

Example GSI plot

Note: NO MORE LFI..... From now on, it will ONLY be called GSI

Growing Season Index

Rules-of-thumb for interpreting GSI values

GSI Value	Classification / Interpretation			
GSI Increasing				
0 to .5	Pre-greenup; dormancy			
> .5	Green-up			
.75 to 1.0	Full plant canopy development			
GSI decreasing				
1.0 to .5	Curing herbaceous vegetation			
< 0.5	Leaf senescence			
Below 0.5	Entering complete curing or dormancy			

Calculate GSI Rescale GSI LFM from GSI

LFM model parameters

- ▶ LFM model parameters:
 - ▶ GSI indicator thresholds
 - Maximum GSI value
- Lower LimitUpper LimitMinimum Temperature28.4° F (-2°C) (T_{MMin})41° F (5°C) (T_{MMax})Vapor Pressure Deficit900Pa (VPD_{Min})4100Pa (VPD_{Max})Photoperiod36000 sec (Photo_{Min})39600 sec (Photo_{Max})
- Default is 1.0 but can be used for model calibration
- Green-up threshold
 - Default is 0.5
- Minimum and maximum live herbaceous and woody fuel moistures
 - Minimum herbaceous FM is 30% and Maximum herbaceous FM is 250%
 - Minimum woody FM is 60% and maximum herbaceous FM is 200%
 - ▶ These are the same maximum values used in NFDRS 1978 / 1988

$$iVPD = \begin{cases} 0, \text{If } VPD \ge VPD_{Max} \\ 1 - \frac{VPD - VPD_{Min}}{VPD_{Max} - VPD_{Min}}, \text{If } VPD_{Max} > VPD > VPD_{Min} \\ 1, \text{If } VPD \le VPD_{Min} \end{cases}$$

Vapor Pressure Deficit

$$iPhoto = \begin{cases} 0, \text{If } Photo \leq Photo_{Min} \\ \frac{Photo - Photo_{Min}}{Photo_{Max} - Photo_{Min}}, \text{If } Photo_{Max} > Photo > Photo_{Min} \\ 1, \text{If } Photo \geq Photo_{Max} \end{cases}$$

$$iT_{\min} = \begin{cases} 0, \text{If } T_{\min} \leq T_{MMin} \\ \frac{T_{\min} - T_{MMin}}{T_{MMax} - T_{MMin}}, \text{If } T_{MMax} > T_{\min} > T_{MMin} \\ 1, \text{If } T_{\min} \geq T_{MMax} \end{cases}$$

Photoperiod

Minimum Temperature

	Lower Limit	Upper Limit
Minimum Temperature	28.4° F (-2°C) (T _{MMin})	41° F (5°C) (T _{MMax})
Vapor Pressure Deficit	900Pa (VPD _{Min})	4100Pa (VPD _{Max})
Photoperiod	36000 sec (Photo _{Min})	39600 sec (Photo _{Max})

GSI Example

	Lower Limit	Upper Limit	Default GSI Greenup Threshold
Live Herbaceous Fuel Moisture	30% (Min _H)	250% (Max _H)	0.5 (GU _H)
Live Woody Fuel Moisture	60% (Min _w)	200% (Max _w)	0.5 (GU _w)

Calculating LFM from GSI

$$\mathsf{LFM}_{W|H} = \begin{pmatrix} \mathsf{GSI}'_{W|H} < \mathsf{GU}_{W|H} & \mathsf{Min}_{W|H} \\ \mathsf{GSI}'_{W|H} \ge \mathsf{GU}_{W|H} & \mathsf{m} * \mathsf{GSI}'_{W|H} + \mathsf{b} \end{pmatrix}$$

$$m = \frac{Max_H - Min_H}{1.0 - GU_H}$$

 $b = Max_H - m$

Example GSI-derived herbaceous fuel moisture

-		💐 Display/Edi	💐 Display/Edit Default NFDRS Parameters 📂			
	Station ID: 241513	Effective Date: 02-Oct-	17 Find Reset Save Vie	ew Change Archive		
fo: Standard Defaults for	GSI Herb and Woody FM Options ha	we been loaded.				
NFDR Parameters	GSI Herb FM Options	GSI Woody FM Options	Nelson Dead Fuel Moisture Op	tions Load Fuel A	Nodel Percentiles	
	Temp Min Index Min (C): -2				
	Temp Min Index Max (C): 5				1
	VPD Index M	in: 900 🗘				
	VPD Index Ma	ax: 4100				-
	Day Length Index Min (se	c): 36000				San
	Day Length Index Max (se	c): 39600				
	● VPD M ● VPD M ● VPD A	ax vg				
	GSI Average Running Length (day	s): 21 🗘				
	Sa Max GSI (for scalin	g): 1 🗘 dbox				San
	Greenup Thresho	ld: 0.5 🗘				
	Max Herb F	M: 250 🌲				-
	Min Herb F	M: 30 🌲	and the second second			7
Load	d Standard Load Save Defaults Defaults	d Save As Defaults				
						San

New dead fuel moisture model

New Dead Fuel Moisture Model

- The previous version of NFDRS required direct user input of State-of-the-Weather (SOW) and changing R to O in WIMS to calculate fine dead fuel moisture before any indices are produced.
- It also required a separate model for calculating 1/10 hr and 100/1000hr dead fuel moistures.
- The old 1hr 1000hr fuel moistures models will be replaced by the scalable Nelson Dead Fuel Moisture Model

New Fine Dead Fuel Moisture Model **Nelson**

Nelson Model:

- More accurately models diurnal and seasonal dead fuel moisture using hourly fire weather observations
- Requires no daily human intervention (I.E. No stateof-the-weather)
- Has been running in a prototype mode in operational WIMS since December, 2011 and has been part of fire behavior prediction tools (FARSITE, FlamMap) for over a decade

Nelson Dead Fuel Moisture Model

- Calculated HOURLY
- Nelson has 4 weather inputs:
 - Temperature
 - Relative Humidity
 - Solar Radiation
 - Precipitation

We define an instance of the Nelson model of the four timelag dead fuel classes used in NFDRS:

Time Lag	Stick Diameter	
	(inches/cm)	
1 hour	0.16 in / 0.4 cm	
10 hour	0.5 in / 1.28 cm	
100 hour	1.6 in / 4.0 cm	
1000 hour	3 in / 7.62 cm	

Nelson Model Specifics

- Accounts for diffusive and capillary water transport between the fuel and the atmosphere
- Derives surface temperature from an energy balance

41

- Net input of heat gains and losses
- Accounts for dew formation on fuel surface
- Scalable to any size dead fuel

Fuel Energy Balance

Heat Loss = Heat Gain

42

Conduction + Longwave Radiation + Evaporation

= Solar Heating + Convective Heating

Capillary water transport in Nelson

44

Changes in stick average moisture content fraction versus hourly captured rainfall (dt = 1 h) during field experiments in Burnsville, N.C. (circles), and Mio, Mich. (triangles). Solid symbols, initial moisture fraction smaller than 0.4; open symbols, initial fraction greater than 0.4 (from Nelson, 2000).

Example Nelson 1hr and 10 hr fuel moistures

Example Nelson 100hr and 1000hr fuel moistures

Recent Nelson 1000-hr Model Modifications

Uncorrected Nelson 1000hr and subsequent ERC

New Minimum Adsorption Rate

New minimum Adsorption Rate and Realigned fuel stick diameters

Flagstaff example: New Model with 2017

Determining stick moisture from nodes

Nelson Model

New model with Radial Median

New model with Radial Median and Adsorption Correction

New model with Radial Median, Adsorption Correction and modified stick radii

- Change the Minimum Adsorption Rate
- Change the stick diameters
- Change the radial averaging method

	Display/Edit Default NF		lit Default NFDRS Parameters 🚧	Back to Menu
	Station ID: 241513	B Effective Date: 02-Oct	-17 Find Reset Save View Chan	ge Archive Sandbox San
fo: Standard Defaults for	GSI Herb and Woody FM Options I	nave been loaded.		
NFDR Parameters	GSI Herb FM Options	GSI Woody FM Options	Nelson Dead Fuel Moisture Options	Load Fuel Model Percentiles
	Use Nelson 100 hour fuel mois computat Use Nelson 1000 hour fuel mois computat	ture Yes V ture Yes V tion: Yes V		
	10 hour fuel moisture stick rad	dius: 0.2 dius: 0.64 dius: 2		
	1000 hour fuel moisture stick rad	dius: 6.4 ncy: Every 6 hours ▼		
Loa	d Standard Load Sav Defaults Default	s Save Save Save As Defaults		

- // Initialize the dead fuel moisture models
- OneHourFM.initializeParameters(0.2, "One Hour"); // 1hr Dead FM model init
- TenHourFM.initializeParameters(0.64, "Ten Hour"); // 10hr Dead FM model init
- HundredHourFM.initializeParameters(2.0, "Hundred Hour"); // 100hr Dead FM model init
- ThousandHourFM.initializeParameters(3.81, "Thousand Hour");

NFDRS Fuel Models

Consolidate Fuel Models

- John Deeming, the lead developer of the NFDRS in use today, proposed reducing the 9 fuel models in the 1972 system to 4 in the 1978 update
 - He negotiated to 20 with his steering committee
 - In the 1988 update, essentially 20 more were added
- Outputs from most NFDRS fuel models are not unique
 - Similarity analysis of output distributions revealed just four really unique fuel model types.

Indexes from different fuel models are correlated though their ranges may differ significantly

ERC correlation analysis between four model pairs

G versus H Correlation = 0.9885

Deeming, 1987

- The standard fire-danger rating fuel models will be a subset of the fuel models used for fire-behavior predictions and fire planning.
- Live-fuel moisture models will certainly be improved as will dead-fuel moisture models (Rothermel and others 1986). More importantly for some areas of the country, will be a better understanding and modeling of the effects of living plants on fire danger.

New Five Fuel Models

- Fuel models are derived from existing 40 FBPS fuel models with addition of a 1000 hour and drought fuel loading
 - No new fuel models to learn
 - ▶ V GR2 (Grass)
 - ▶ W GS2 (Grass/Shrub)
 - ► X SH9 (Brush)
 - ► Y TL1 (Timber)
 - Z SB1 (Slash)

NFDRS 2016 Fuel Type	NFDRS 2016 Fuel Model	Equivalent NFDRS 1978 Fuel Model
Grass	V	A,L,T
Grass / Shrub	W	R,S,C,D
Brush	Х	B, F
Timber	Y	G,H,N,P,O,Q,U,E
Slash	Z	I,J,K

Fuel Mode	l Paraneter	rs			-						-				-				×
-Model Select Fuel Model:	tion Y - Timbe	er		• 1	Jse 88 Model	Add 1	To Table	Remove Cur	rrent Clea	r Table	Close								
Fuel Model	88 Model	1 Hour Loading	10 Hour Loading	100 Hour Loading	1000 Hour Loading	Herb Loading	Woody Loading	Drought Loading	1 Hour SA : Vol	10 Hour SA : Vol	100 Hour SA : Vol	1000 Hour SA : Vol	Herb SA : Yol	Woody SA : Vol	Heating #	Moisture Extinction	Depth	Wind Factor	Max SC
G		2.5	2	5	12	0.5	0.5	0	2,000	109	30	8	2,000	1,500	8,000	25	1	0.4	30
Y		2.5	2.2	3.6	10.16	0	0	5	2,000	109	30	8	2,000	1,500	8,000	25	0.6	0.2	5
				•											•	•	•	•	

	c			Fu (†	el Loa ons a	ding c ⁻¹)			Surf	ace /	Area to Volume Ratio (ft-1) た 家								
NFDRS Fuel Mode	Scott and Burgar Equivalent	1 Hr	10 Hr	100 Hr	1000 Hour	Herb	Woody	Drought	1 Hr	10 Hr	100 Hr	1000 Hour	Herb	Woody	Fuel Heat Conter (btu lb ⁻¹)	Moisture Extinct (?	Depth (ft)	Wind Adjustmen Factor (DIM)	Max SC
Code	Code	ΓI	L10	L100	L1000	LHERB	LWOOD	LDROUGHT	SGI	SG10	SG100	SG1000	SGHERB	SGWOOD	Я	MXD	DEPTH	WNDFC	SCM
V	GR2	0.1	0	0	0	1.0	0	1.1	2000	109	30	8	2000	1500	8000	15(40)	1.0	0.6	108
W	GS2	0.5	0.5	0	0	0.6	1	1.6	2000	109	30	8	2000	1500	8000	15(40)	1.5	0.4	62
Х	SH9	4.5	2.45	0	0	1.55	7	8.5	2000	109	30	8	2000	1500	8000	25(40)	4.4	0.4	104
Y	TL1	2.5	2.2	3.6	8.64	0	0.2	15.44	2000	109	30	8	2000	1500	8000	25(40)	1	0.2	5
Z	SB2	4.5	4.25	4	4	0	0	16.75	2000	109	30	8	2000	1500	8000	25(40)	1	0.4	19

Percent of Active NFDRS Stations in WIMS (n=2040) with Each Fuel Model, Grouped by Type

77

Fuel Model Comparison Exercise

NFDRSCalculator	×
Site Fuel Model: Y - Timber Slope Class: 1 : 0 - 25% Use 88 Model:	Veather Temperature: 80 ÷ 20' Wind: 5 ÷ SOW: 1 - Scattered Clouds
Fuel Moistures 1 - Hr FM: 4 10 - Hr FM: 5 100 - Hr FM: 10 1000 - Hr FM: 10 1000 - Hr FM: 12 Herb FM: 30 Woody FM: 60	88 Model Inputs Season: 3 - Summer Woody Greenness: 5 KBDI: 100 Rain Event: I Deciduous Shrubs: I
NFDRS2016 Specific GSI: 0.5 KBDI: 100 SCM: 30	Max GSI: 1
Fuel Model Parameters	KBDI Calculator Calculate

Minor Changes

- ► GSI-driven curing function
 - Replaces load transfer logic
- Maintain the drought fuel loading
- Moisture of extinction
- Site-specific maximum spread component and variable slope input

Curing

- Remove the 'Load Transfer' for dynamic fuel models and replace with 'Curing'
- Calculated as a function of GSI
- Only applies to fuel models with live herbaceous loading

Back to the calculator.....

We can predict curing with GSI

GSI-driven curing function

- Curing is expressed as the ratio of fine dead fuel to total loading
- $C = \frac{w_{dead}}{w_{total}}$
- Additional loading is calculated based on the running average of the herbaceous GSI value

$$\begin{pmatrix} GSI < HerbGreenup \\ GSI \ge HerbGreenup \\ C = -\left(\left(\frac{1.0}{(1.0-GU_H)^*}\right) * GSI'\right) + \left(\frac{1.0}{1.0-GU_H}\right) \end{pmatrix}$$

- Once C is calculated the 1hr and herbaceous loadings are calculated as follows:
- ▶ W1P = W1 + WHERB * C
- WHERBP = WHERB * (1 C)

Drought fuel loading

 Additional fuel loading added to fuel moisture in response to drought

- We expect to improve drought representation in future versions
 - KBDI is currently being utilized as a place-holder for improved drought metrics

Example increase in fuel load for fuel model Y


```
if (tmpKBDI > 100 )
{
    WTOTD = W1 + W10 + W100;
    WTOTL = WHERB + WWOOD;
    WTOT = WTOTD + WTOTL;
    PackingRatio = WTOT / fDEPTH;
    WTOTD = WTOTD + W1000;
    DroughtUnit = WDROUGHT / 700.;
    W1 = W1 + (W1 / WTOTD) * (tmpKBDI - 100) * DroughtUnit;
    W10 = W10 + (W10 / WTOTD) * (tmpKBDI - 100) * DroughtUnit;
    W100 = W100 + (W100 / WTOTD) * (tmpKBDI - 100) * DroughtUnit;
    W100 = W1000 + (W1000 / WTOTD) * (tmpKBDI - 100) * DroughtUnit;
    WTOT = W1 + W10 + W100 + WTOTL;
    fDEPTH = (WTOT - W1000) / PackingRatio;
```

}

How much drought fuel loadings is added to the 1000 hour loading when the KBDI is 650?

Other modifications

- Adjective Rating calculations often work poorly in humid regions here the Spread Component does not approve the SCMax value of the fuel model
 - We have added the ability to allow SCMax to vary by location
- Also, moisture of extinction values for all fuel models are too low to allow proper system operation in more humid areas
 - ▶ We have added a 'humid' switch in WIMS to allow the user to set MXD to 40%
- Finally, we have added an option to allow the direct input of slope into NFDRS. This paves the way for gridded fire danger applications in the future.

Why change SCMax?

Comput ed class level	Upper value for class											
0	SI = O											
1	SI-low/8											
2	SI-low/4											
3	(SI-low)(3/8)											
4	SI-low/2	Desired	Di	splay	ed Sta	ffing C	lass					
5	(SI-low)(3/4)	Number of										
6	SI-low	Statting Classes										
7	(SI-low + SI- high)/2	3	0	1	1	1	1	1	1	4	4	5
8	SI-high	4	0	1	1	1	1	3	3	4	4	5
9	> SI-high	5	0	1	1	2	2	3	3	4	4	5
	C C	6	0	1	1	2	2	3-	3+	4	4	5
		7	0	1	1	2	2	3-	3+	4-	4+	5
		8	0	1	1	2-	2+	3-	3+	4-	4+	5
		9	0	1-	1+	2-	2+	3-	3+	4-	4+	5
		Computed 9- Class Level	0	1	2	3	4	5	6	7	8	9

Adjective Rating in WIMS / WFAS

Staffing Levels (SL)	А	djective	Fire Dang	er Rating	g (R)
1-, 1, 1+	L	L	L	м	м
2-, 2, 2+	L	м	м	м	н
3-, 3, 3+	м	м	н	н	νн
4-, 4, 4+	м	н	VH	VH	E
5	н	νн	νн	E	Е
Ignition Component	0-20	21-45	46-65	66-80	81-100

ESTA

Adopt 2016 Models

D	Active	Р		to	** 78 NFDRS O	nly **	88	S	G	C	st.		te	1st		-	St St	affing ldx	Breakpoin	its 👘	
е	Fuel	r	144	H		Greenup	S	L	r	1-	MXD	SCM	Herb	Woody	Х-			L	w	H	igh
	Models	i	ID	S	Herb Date	Date	Ь	P	S	i			FM	FM	1000	SI	DC	SI%	Val	SI%	Val
		1	7G •] P ▼	01-Apr-15	30-Mar-15	•	3=41-55% 🔻	P •	2 🔻	LT	30	7.2	60	18	EC 🔻	5	90	55	97	62
		2	7C •] P •	01-Apr-15	30-Mar-15	•	2=26-40% •	A۲	2 🔻	LT	32	7.2	60	18	EC 🔻	5	90	16	97	18
			•				•	•	•	•	•					•					
			•				•	•	•	•	•					•					
t			•			te	•	•	•	•	•					T					
			•				•	•	•	•	•					•					
			•				•	•	•	•	•					•					
			•				•	•	•	•	•					•					
							•	•	•	•	•					•					

Snow Flags

- Carried over from NFDRS 78/88
- Sets air temperature to 0 C / 32 F
- Sets RH to 99.99%
- Sets Solar Radiation to 0
- ▶ PPT = 0

	StationID	ObsDate	Туре	OMC 10	Season	GreenHerb	GreenShrub	SR_SOW	SR_WetFlag	SnowFlag
861	241513	02/10/17 13:00	0					2	1	1
862	241513	02/11/17 13:00	0					3	0	1
863	241513	02/12/17 13:00	0					2	0	1
864	241513	02/13/17 13:00	0					2	0	1
865	241513	02/14/17 13:00	0					2	0	1
866	241513	02/15/17 13:00	0					2	0	1
867	241513	02/16/17 13:00	0					3	0	1
868	241513	02/17/17 13:00	0					0	0	1
869	241513	02/18/17 13:00	0					3	0	1
870	241513	02/19/17 13:00	0					3	0	1
871	241513	02/20/17 13:00	0					3	0	1
872	241513	02/21/17 13:00	0					4	1	1
873	241513	02/22/17 13:00	0					3	0	1
874	241513	02/23/17 13:00	0					3	0	1
875	241513	02/24/17 13:00	0					3	0	1
876	241513	02/25/17 13:00	0					2	0	1
877	241513	02/26/17 13:00	0					3	0	1
878	241513	02/27/17 13:00	0					3	0	1
879	241513	02/28/17 13:00	0					2	0	1
880	241513	03/01/17 13:00	0					3	0	1
881	241513	03/02/17 13:00	0					2	0	1
882	241513	03/03/17 13:00	0					2	0	1
883	241513	03/04/17 13:00	0					3	0	1
884	241513	03/05/17 13:00	0					3	0	1
885	241513	03/06/17 13:00	0					2	0	1
886	241513	03/07/17 13:00	0					3	0	1
887	241513	03/08/17 13:00	0					3	0	1
888	241513	03/09/17 13:00	0					3	0	1
889	241513	03/10/17 13:00	0					3	1	1
890	241513	03/11/17 13:00	0					3	0	1
891	241513	03/12/17 13:00	0					2	0	1
892	241513	03/13/17 13:00	0					3	0	1
893	241513	03/14/17 13:00	0					2	1	1
894	241513	03/15/17 13:00	0					3	0	1
895	241513	03/16/17 13:00	0					2	0	1
896	241513	03/17/17 13:00	0					2	0	0
897	241513	03/18/17 13:00	0					3	0	0
898	241513	03/19/17 13:00	0					2	0	0
899	241513	03/20/17 13:00	0					2	0	0
900	241513	03/21/17 13:00	0					3	0	0
901	241513	03/22/17 13:00	0					3	0	0
902	241513	03/23/17 13:00	0					3	0	0

- Already export from WIMS
- Will work on automated input value
- Pre-loaded in the WRCC DRI RAWS points from 2001-2016 for the Continental United States

What doesn't change?

- Most of the same weather inputs
- > All the same output components and indices: still have ERC, BI, SC and IC
- The look, feel and use of both FireFamily+ and WIMS

Summary of simplifications

▶ No need for:

- Climate class
- No required manual entries:
 - Green-up, freeze and dormant dates
 - State-of-the-weather
- All of the revisions in the 1988 system
 - Deciduous WAF, season codes, greenness factors, 1hr=10hr

- Weighed sticks
- Fosberg 1 and 10 hour fuel moisture model
- Burgan live fuel moisture model
- Dynamic Load Transfer
- Total of 35 fuel models eliminated

End result of changes:

What doesn't change?

- Most of the same weather inputs
- All the same output components and indices: still have ERC, BI, SC and IC
- The look, feel and use of both FireFamily+ and WIMS

How it's better?

- Fully automated NFDRS and more consistent
- Improved response to drought
- More easily applied to gridded weather
- Ready for future work
- Reduced workload (No R/O, SOW daily entries or seasonal entries)

Example ERC and BI from NFDRS2016

Central Washington

Florida

Flagstaff, AZ

ERC Fuel Model G

ERC Fuel Model Y

Things to know

- The absolute numbers will change!
- The absolute numbers will change!
- The absolute numbers will change!
- The percentiles should be comparable
- Consider comparing frequency in each staffing class
- Decimals matter and they are a good thing
- Fire Danger doesn't tell me anything about potential fire behavior
 - Not true.... That's next
- Fire Danger can be used to quantify actual energy release, spread rates or flame length? NO!

Contingency Plans

- Make the KBDI drought fuel loading optional
- Swap back in the old FM100 and FM1000 models
- Revert back to representative fuel models from the 1978 system

All future applications should consider....

- NEVER discussing absolute index values but rather use percentiles for all communications
- Consider selecting and calibrating TWO indices for a given area: one for preparedness decisions and the other for response decisions
- Objective criteria for Decision Points
 - Logistics regressions are meant to predict a yes or no response
- Bivariate evaluations or more (All we want is the best predictor)

This is ONLY THE BEGINNING, GET USED TO CHANGE!

But with less impact to you as a user / manager of NFDRS
Model Evaluation

Energy Release Component

Fuel Model G Chi Square DF P-Value R(L)-Sq.

33.3 8 0.0001 0.97

Fuel Model Y

Chi Square DF P-Value R(L)-Sq. 33.3 8 0.0001 0.97

FireFamilyPlus 4.1

😵 HTML Help

Locate Back Forward Stop Refresh Home Font

Contents Index Search Favorites Type in the keyword to find:

Chi square

Reports Analysis and Rating Models

Bringing it all together

Print

Our goal is to rate models (indices) by reviewing the following.

- 1. Goodness of Fit.
 - <u>Chi-Square</u> (Lower is better) <13 is excellent, <20 is good, > 26 is not so good.

- Logistic Regression RL² (Higher is better).
- Range of Probabilities Over the Range of the Predictor Variable.
 .1 to .9 is very good.
 - o .2 to .3 is useless.

Distribution of Predictor Variables.

A wider range allows more flexibility in setting levels.

We do not want 90% of all observations in one or two classes.

Predicting fire dangers as combinations of variables

GSI

ERC

https://gacc.nifc.gov/nwcc/districts/CWICC/F DRA.html

FDRA – Chelan : 2003 – 2016 : 5607 days

		NFDRS 2016 ERC(Y)							
			(0,22.5]	(22.5,45]	(45,90]	(90,97]	(97,100]		
			SL 1	SL 2	SL 3	SL 4	SL 5		From \
sc(G)	(0,22.5]	SL 1	1406	777	0	0	0	2183	Appe
78 EF	(22.5,45]	SL 2	1	266	72	0	0	339	Techn
3S 19	(45,90]	SL 3	0	72	2292	141	17	2522	
NFDI	(90,97]	SL 4	0	0	153	190	52	395	
	(97,100]	SL 5	0	0	4	64	100	168	
			1407	1115	2521	395	169	5607	

From WIMS User's Guide Appendix E. NFDRS Technical Reference

http://pnwnfdr.pythonanywhere.com/wacwc/chelan/

Staffing Levels (1-5) - Divisions of Energy Release Component Fuel Model-G (37|52|69|76) based on historic Problem Fire occurrence:

-60% of Problem Fires were discovered at Staffing Level 5

-30% of Problem Fires were discovered at Staffing Level 4

-10% of Problem Fires were discovered at Staffing Level 3

-No Problem Fires have been discovered at Staffing Level 1 or 2

*Note that Staffing Level is date limited such that Levels 3, 4, and 5 will not be reached until 3, 2, and 1 week prior to the earliest historic occurrence of a Problem Fire (6/26).

http://pnwnfdr.pythonanywhere.com/wacwc/chelan/ **Problem Fire -** A fire with a final size of 100+ acres, fires of this size are considered a problem for typical resource staffing.

SIG	Index	Fuel_Model	Years	Number_Yrs	FD_AUROCC	Num_All_Days	Num_Fire_Days
Chelan	ERC	G	2003_2016	14	0.830	5104	340
Chelan	BI	G	2003_2016	14	0.817	5104	340
Chelan	SC	G	2003_2016	14	0.790	5104	340
Chelan	IC	G	2003_2016	14	0.807	5104	340
Chelan	ERC	Y	2003_2016	14	0.836	5104	340
Chelan	BI	Y	2003_2016	14	0.816	5104	340
Chelan	SC	Y	2003_2016	14	0.788	5104	340
Chelan	IC	Y	2003_2016	14	0.805	5104	340

The Future of Fire Danger in the United States

The future of NFDRS

- Integrate overstory into Fire Danger Calculation
- Spatial WIMS
 - With password-free data access
- Seven day forecasts from the NWS NDFD
- Two week forecasts from GFS
- Better evaluation data (growth days versus report days)

←	→ C ①	Secure https://m.wfas.net/wims.php?StationID=241513	☆	
=	Apps 🛞 Sc	outhern Bite - Stace 🧧 SnipSave - Online co 🗅 RAWS FW13 🔕 WFDSS 🥐 app.climateengine.o 🚯 RMRS Missoula - Ho S Scrible 👖 Golden Gate Weathe	» 📙 O)ther boo

BLUE MTN (MISSOULA) (241513)

Date	Hour	Dry Bulb (F)	RH (%)	Windspeed (mph)	Wet Flag	Snow Flag
04/30/2018	0	41	100	0	N	N
04/30/2018	1	41	100	0	N	N
04/30/2018	2	41	100	0	N	N
04/30/2018	3	41	100	0	N	N
04/30/2018	4	41	100	0	N	N
04/30/2018	5	40	99	0	N	N
04/30/2018	6	40	100	0	N	N
04/30/2018	7	39	98	1	N	N
04/30/2018	8	40	98	0	N	N
04/30/2018	9	41	95	0	N	N
04/30/2018	10	42	97	1	N	N
04/30/2018	11	45	88	1	N	N
04/30/2018	12	50	77	2	N	N
04/30/2018	13	55	62	2	N	N
04/30/2018	14	54	53	3	N	N
04/30/2018	15	56	49	1	N	N

https://www.wfas.net/prototypes/swcc/

Risk = Hazard X Exposure

Hazard: Anything that can cause harm Exposure: Dose, duration, frequency We will focus on Operational Risk

HAZARD

Anything that can cause harm (eg. a chemical, electricity, ladders, etc) RISK

How great the chance that someone will be harmed by the hazard

Accident Investigation Factual Report

Cramer Fire Fatalities North Fork Ranger District Salmon-Challis National Forest Region 4

Salmon, ID, July 22, 2003

Twisp River Fire Fatalities and Entrapments

Learning Review Narrative

Fall 2016

Spatial Fire Behavior Potential Forecast

Energy Release Component (Percentile)

From Fire Danger to Fire Behavior

Severe Fire Weather Potential Mapping

https://m.wfas.net

- Mobile-enabled but works on everything
- Geo-located in the future
- Incorporates GeoMAC fire locations and perimeters, MODIS and VIIRS active fire products from RSAC Active Fire Mapping Program, fuels and slope maps
- Operational and available daily @ ~0630MT
- Currently provides forecast for next three days

Severe Fire Weather Potential Map Examples

🚾 🖾 🖾 🔓 🌆 🛦 🛦 🕸 🕸 🖓 💯 📶 100% 🛢 12:3

https://www.youtube.com/watch?v=NIj4b1nRfds

Leaflet | GeoMAC, NWS NDFD and WFAS,

Derived by WFAS using the National Digital Forecast Database and RAWS surface weather observations

Pioneer Fire

Southeast fall fire season 2016

CBSIAP December 4, 2016, 10:45 PM

Death toll from Tenn. wildfires rises to 14

Some waits of a burned-out business remain Wednesday, Nov. 30, 2016, in Cadinburg. Term., after a witdfre swept brough the area Monday. / MARK HUMPHREY/AP

f Share / 🕊 Tweet / 🕲 Reddit / 🏴 Flipboard / 🕲 Email

GATLINBURG, Tenn. -- The death toll from the Gatlinburg area fires has risen to 14.

Santa Rosa Fires

Fires in Sonoma County leave at least nine dead and about 180 more missing

Sonoma County Sheriff Rib Giardano confirms nine fire-related death in the wildfires. Still many people missing,he said 3:19 PM - Oct 10, 2017

○ 3 See Phil Willon's other Tweets
Preliminary Summary Report of Serious or Near Serious CAL FIRE Injuries, Illnesses and Accidents

Fatality Firefighter Entrapment

12/14/2017

Thomas Fire

17-CA-VNC-103156

California Southern Region

SUMMARY

On December 13, 2017, a CAL FIRE Engine Strike Team (STEN1), with a leader (STL1) from the San Diego Unit (MVU) was assigned to Branch III, Division X of the morning of December 14, 2017, a Fire Apparatus Engineer (FAE1) and four Fire Fighter 1s (FTL, FF2, FF3 and FF4) from STEN1 were engaged in the placement of a hoselay in support of a dozer line with fire established above the line. At approximately 9:27 AM, while attempting to suppress spot fires below the dozer line, FAE1 became entrapped and suffered fatal injuries. The four firefighters on the dozer line retreated up their escape route without injury.

Thomas Fire, 2017

20 Mar 2018

From Fire Danger to Fire Behavior

This process can be followed by any National Forest. All the necessary data already exists.

Energy Release Component (Percentile)

From CFBX probabilities to Fire Behavior Risk

Different sensitivity To windspeeds

Fire behavior observations also compare well with satellite-derived fire intensity

60.1 - 70

>97

Fire Behavior Risk 09 April 2015 (Yearday 100)
Fire

Image: Constraint of the state of

Salmon-Challis National Forest,

15.1 - 30

Fire Behavior Risk 27 August 2015 (Yearday 240)

How do we make this part of daily business?

- Mobile-enabled maps are made available before the start of the duty day
- Contributes to a common operating picture
- Use of information is written into the Delegation of Authority (DOA) letters for Type 3,4 and 5 ICs and Duty Officers
- Used to brief at the National, Regional, State, Forest and District levels
- Fire management, line officers and cooperators have a common picture

Fire Management Decision Support Continuum

National Wildland Fire Preparedness and Response System

Data / Inputs Systems Plans Outputs

Energy Release Component Percentile Southern Area Coordination Center

- Build a culture of LEARNED centered around NFDRS and its applications
- Create a community of users that can learn together
- Learn to adapt to change because more is coming!

Slack

- https://nfdrs2016.slack.com/
- All online and open to the anyc # dri # dro
- Mobile-friendly

https://www.wfas.net/nfdrs2016

US National Fire Danger Rating System (NFDRS2016)

Search	
--------	--

Home NFDRS Intro NFDRS2016 NFDRS2016 Tasks & Status Downloads Prototype Products NWCG Fire Danger Subcommittee

The latest on the US National Fire Danger Rating System and NFDRS2016 implementation...

Welcome! Subscribe to our blog or check back often for news, information and tips related to the evolution and successful implementation of NFDRS2016. Look for updates related to the NFDRS itself, related training & education, applying NFDRS to make fire management decisions, prototype products & applications, related technology, and more! Browse the top menu bar for some preliminary information, to view some prototype products, and check out our downloads section. Comments and questions encouraged!

TOPOFIRE: A topographically resolved drought and wildfire danger monitoring system for the conterminous United States

- NASA Applied Sciences Funding (ROSES A.35)
- Project Goals:
 - Develop topographically resolved gridded fire danger products for the USA to support the Wildland Fire Assessment System (WFAS) and Wildland Fire Decision Support System (WFDSS)
 - Integrate eco-hydrologic indices into wildfire danger assessment

TOPOFIRE: A topographically resolved drought and wildfire danger monitoring system for the conterminous United States

- NASA Applied Sciences Funding (ROSES A.35)
- Project Goals:
 - Develop topographically resolved gridded fire danger products for the USA to support the Wildland Fire Assessment System (WFAS) and Wildland Fire Decision Support System (WFDSS)
 - Integrate eco-hydrologic indices into wildfire danger assessment

Modified SWAT snow model calibrated with gridded radiation data

Modeled SWE – current + 4 day forecasts

Snowmelt timing and topography

SWE (mm)

Why does it matter?

Cumulative daily area growth and personnel assigned (from ICS-209) by Severe Fire Weather

Success Probability

Fuel and topographic influences on wildland firefighter burnover fatalities in Southern California

Wesley G. Page^A and Bret W. Butler^A

^AUSDA Forest Service, Rock 5775 Highway 10 W, Miss ^BCorresponding authors. En

Percentile: 1:0-57%, 2:58-78%, 3:78-92%, 4:92-97%, 5:>97%

Cedar Fire 2003: By the time the fire was fully contained on November 4, it had destroyed 2,820 buildings (including 2,232 homes) and killed 15 people, including one firefighter.^[2]

Relationships between fire danger indices and firefighter entrapments

Page, Freeborn and Jolly, Unpublished Data

Forest-wide risk assessment for the Lolo National Forest

Framework for discussion

Fire Environment	Low/Moderate	High/Very High	Extreme
Risk Zones			
Community Protection			
General Protection			
Restoration			
Maintenance			

What strategies usually work?

How would tactics be modified? (Line production, Burnouts, etc..,)

Thank you..... Question?

Thanks

