The Plant Kingdom: origin, evolution & characteristics

Plant Origin

- First plants
 - 1. 500 mya
 - 2. Looked like mosses
 - 3. Probably evolved from green algae
 - Cellulose cell walls
 - Same type of chlorophyll
 - Store excess food as starch

The Plant Kingdom: Algae

• The oldest and most simple photosynthetic organisms on earth are algae.

• The multicellular algae are separated into divisions based on their <u>photosynthetic</u> <u>pigments</u>, <u>food storage products</u>, and <u>cell-wall components</u>. The three major groups include:

Brown algae

Red algae

Green algae

The Plant Kingdom

• Green algae are thought to have given rise to the "higher" plants.

• They have the same pigments, storage products, and cell-wall type. Also, many of them live in fresh water...

• The different plants selected for adaptations that allowed them to exploit more of the terrestrial regions...

• What adaptations would you need for transition of life on to land?

Evolution of Plants (Cladogram)

The Plant Kingdom

This kingdom has organisms that are multi-cellular,
have cell walls and chlorophyll,
produce their own food, and
don't physically move from one place to another.

Plant Classification

- Domain: Eukaryota
- Kingdom: Plantae
- Cell type: eukaryotic
- Cell number: multicellular
- Feeding: autotrophic (photosynthesis)
- Reproduction: sexual (seeds)

Plant Classification

- Plants evolved from green algae (protists)
- They are first classified as
 - Nonvascular short plants with <u>no transport</u> <u>tissue (like veins)</u>, e.g. moss
 - Vascular taller plants with <u>veins</u>, e.g. trees
 - <u>Xylem veins for water</u>
 - <u>Phloem veins for food</u>

THE PLANT KINGDOM

CRYTOGAMS/THALLOPHYTE/LOWER PLANTS

PHANEROGAMS/SPERMATOPHYTE/ HIGHER PLANTS

• Flowering or seed-bearing plants

• A plant that reproduces by spores, without flowers or seeds.

Pteridophytes Plants with Feather-like Leaf

ANGIOSPERMS

GYMNOSPERMS

- Vascular Plants can further be classified as
 - Gymnosperms cone bearing plants,
 e.g. pine trees
 - Angiosperms flowering plants,

e.g. roses

DICOTYLEDONS

Trees, shrubs, climbers

MONOCOTYLEDONS

Grasses, orchids etc

	Seed	Root	Vascular	Leaf	Flower
Monocot		TRACT			
	One cotyledon	Fibrous roots	Scattered	Parallel veins	Multiples of 3
Dicot		States	C	Reger	
	Two cotyledon	Tap roots	Ringed	Net-like veins	4 or 5

DICOTYLEDONS

POLYPETALAE

GAMOPETALAE

• Plants with the petals free from the base or only slightly connected

• Plants with the petals fused from the base

MONOCHLAMYDEAE

• Plants with flowers that had either a calyx or corolla, but not both.

Argemone mexicana

Pyrularia

Non-Vascular PTERIDOPHYTA: Ferns

Adaptations of Plants to Land

- Seeds (Dormant until water added)
- Roots
- Stems
- Leaf Autotrophic Organisms
- Must Conserve Water (Stomata)
- Reproductive Strategies

Roots, Stems, and Leaves

Plant Tissues

Root, Stem, and Leaf Tissues

1. The Seed

- External Structures
- 1. Seed coat
- 2. Hilum
- 3. Micropyle
- Internal Structures
- 1. Embryo plant
- 2. Cotyledon

Germination – To Begin to Grow

2. Roots: Anchors Away Functions Anchors the plant Absorbs water and minerals from soil Stores food

Primary Root

 The first root to develop from the seed.

Secondary Roots

 Develop from the primary root and from themselves.

Tap Root System

- Develops from the primary root.
- Reaches deep into the ground
- Helps the plant during periods of drought.

Fibrous Root System

- Develops when the secondary roots
 become the main roots.
- Shallow roots but
 spread over a broad
 area.
- Helps prevent erosion.

The Root Tip

- Root cap
 (Protects the root from abrasion)
- Apical Meristem (Produces new cells for growth)
- Zone of Elongation (Cells elongate allowing the root to grow longer)
- Zone of Maturation (Cells develop into tissues)

3. Stems: The Connector

Functions

- Connects the leaves with the roots
- Displays the leaves for maximum sunlight exposure.
- Stores food
- Minor photosynthetic ability
- Contains vascular tissue
 - Phloem transports sugars from leaves
 - Xylem transports water and minerals from roots

Comparing Primary and Secondary Growth of Stems					
Characteristics	Primary Growth	Secondary Growth			
Where It Occurs	At ends of plants	In stem			
Effect on Plant	Increases plant length	Increases stem width			
How It Is Produced	By cell division in the apical meristem	By cell division in meristems other than the apical meristem			

S. (123)

Secondary Growth in Stems

Layers of a Tree Trunk

Xylem: Heartwood Contains old, nonfunctioning xylem that helps support the tree

Xylem: Sapwood Contains active xylem that transports water and minerals - **Cork** Contains old, nonfunctioning phloem that protects the tree

Cork Cambium Produces protective layer of cork

Phloem Transports sugars produced by photosynthesis

Vascular Cambium Produces new xylem and phloem, which increase the width of the stem

4. Leaf - Autotrophic

Functions

- Carries on Photosynthesis
- Stores food
- Regulates transpiration through stomata

Internal Structure of a Leaf

Internal Leaf Anatomy

- Cuticle
- Epidermis
- Palisade Mesophyll (chloroplasts)
- Spongy Mesophyll
- Vein (xylem and phloem)
- Air Spaces
- Lower Epidermis
- Stomata
- Guard cells

Sugar Transport in Phloem

Nutrient Transport

Occurs in PHLOEM

Pressure-flow hypothesis

5. Water Conservation

Cuticle

- Waxy outer coating that prevents water loss
- Stomata
 - Openings for gas exchange
 - Open to release water, Close to conserve

Stomata

Stomata

- Guard cells regulate the size of the stoma.
- K+ (potassium ions) enter the cells causing them to fill with water.
- This opens the stoma when they become turgid.
- A loss of K+ causes the opposite to occur, and they close when they become flaccid.

Open The Cells are Turgid

Stomata Control

Closed The Cells are Flaccid

Transpiration

Water Transport

- 1. Root Pressure
- 2. Capillary Action
 - Adhesion attraction between unlike
 - Cohesion attraction between like
- 3. Transpirational Pull
 - Pulling water up through the vascular tissue due to evaporation and capillary action

6. Reproductive Strategies

- 1. Seeds
 - Contains an embryo
 - Contains a food supply
 - Covered by a protective coat
- 2. Spores
 - Single haploid cell with hard outer wall

Elaborate

- Xylem Demonstration
- The Magic Toothpick
- Linking Up Demonstration
- Stomata Lab
- Transpiration Lab

Evaluate