# FUNDAMENTALS OF GIS

## **CONTENTS OF THIS LECTURE PRESENTATION**

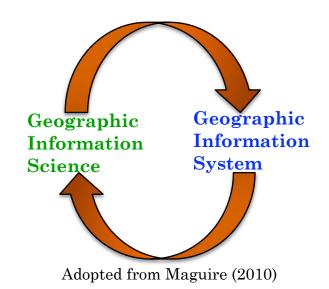
Basic concept of GIS
Basic elements of GIS
Types of GIS data
Examples of GIS applications

# Basic Concept of GIS

## BASIC CONCEPT OF GIS 1/5

#### • What does GIS stand for?

- <u>Geographic Information Science</u>
  - is the science concerned with the systematic and automatic processing of spatial data and information with the help of computers
  - is the theory behind how to solve spatial problems with computers
- <u>Geographic Information System</u>
  - •is a system designed for storing, analyzing, and displaying spatial data
  - is the use of hardware, software, people, procedures, and data


# **BASIC CONCEPT OF GIS 2/5**

#### • Geographic Information Science

• presents a framework for using information theory, spatial analysis and statistics, cognitive understanding, and cartography (Longley et al., 2005).

#### • Geographic Information System

 focuses on the processes and methods that are used to sample, represent, manipulate and present information about the world (Goodchild, 1992).



"GI Science allows us to consider the philosophical, epistemological & ontological contexts of geographic information & GI Systems provide the infrastructure, tools and methods for tackling real world problems within acceptable timeframes."

# BASIC CONCEPT OF GIS 3/5

## Literal Definition

- <u>*Geographic*</u> relates to the surface of the earth.
- <u>Information</u> is a knowledge derived from study, experience, or instruction.
- <u>System</u> is a group of interacting, interrelated, or interdependent elements forming a complex whole.
- <u>Science</u> is the observation, identification, description, experimental investigation, and theoretical explanation of phenomena.

# BASIC CONCEPT OF GIS 4/5

### • Functional Definition

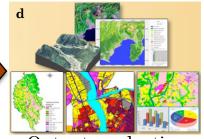
• GIS is a system for inputting, storing, manipulating, analyzing, and reporting data.

### • Component Definition

• GIS is an organized collection of computer hardware, software, geographic data, procedures, and personnel designed to handle all phases of geographic data capture, storage, analysis, query, display, and output.

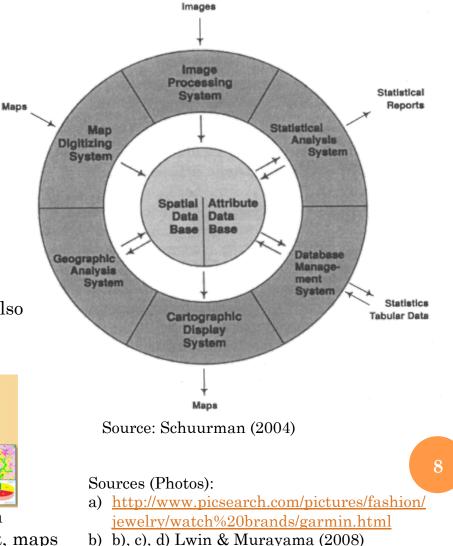
# **BASIC CONCEPT OF GIS 5/5**

#### • Functions of GIS


- Data collection
   Capture data
- Data storing, processing & analysis
  - Store data
  - Query data
  - Analyze data
- Output production • Display data
  - Produce output



- •Data collection
  - using GPS & RS
  - paper maps are also sources of data




•Data storing, processing & analysis



•Output production - statistical report, maps

#### • Components of GIS



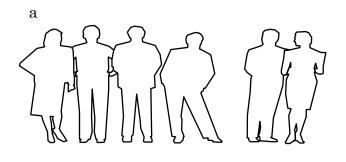
# Basic Elements of GIS

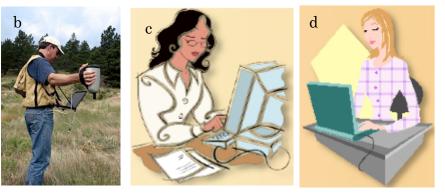
## BASIC ELEMENTS OF GIS 1/7

• People

o Data

- Software
- Hardware
- Procedures/Methods


Adopted from: Brooks (undated) <u>http://www.mapsofindia.com/gis/gis-components.html</u> <u>http://bgis.sanbi.org/gis-primer/page\_12.htm</u> <u>http://www.sfu.ca/rdl/GIS/tour/comp\_gis.html</u>


10

## **BASIC ELEMENTS OF GIS 2/7**

#### • 1. People

- are the most important part of a GIS
- define and develop the procedures used by a GIS
- can overcome shortcoming of the other 4 elements (data, software, hardware, procedure), but not vice-versa

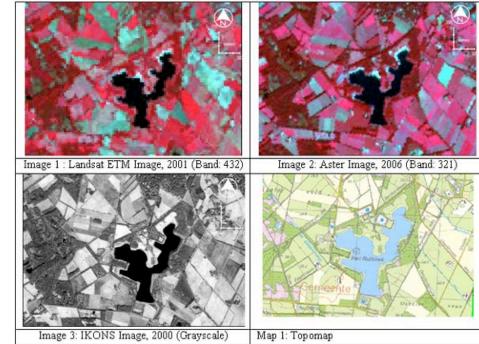




- Ground truth data collection
- Data storing, processing and analysis

11

Sources (Photos):

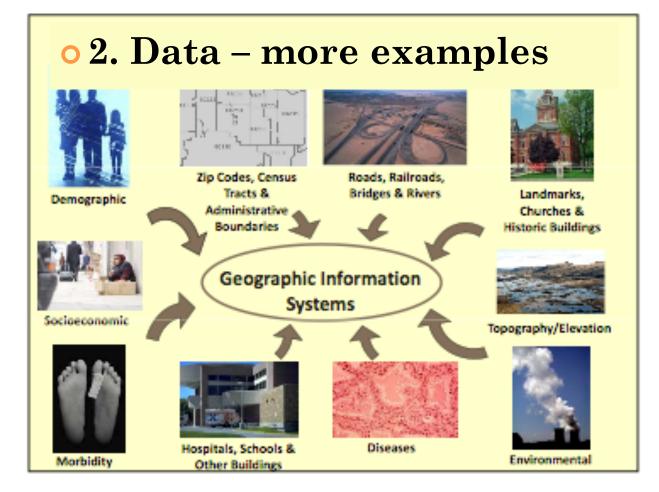

- a) Brooks (undated)
- b) <u>http://www.asdi.com/remote-sensing/</u> <u>applications/ground-truthing</u>
- c), d) Lwin & Murayama (2008)

# BASIC ELEMENTS OF GIS 3/7

## o 2. Data

- Data is the information used within a GIS
- Since a GIS often incorporates data from multiple sources, its accuracy defines the quality of the GIS.
- GIS quality determines the types of questions and problems that may be asked of the GIS

Remote Sensing and topographic data




#### Ground truth data

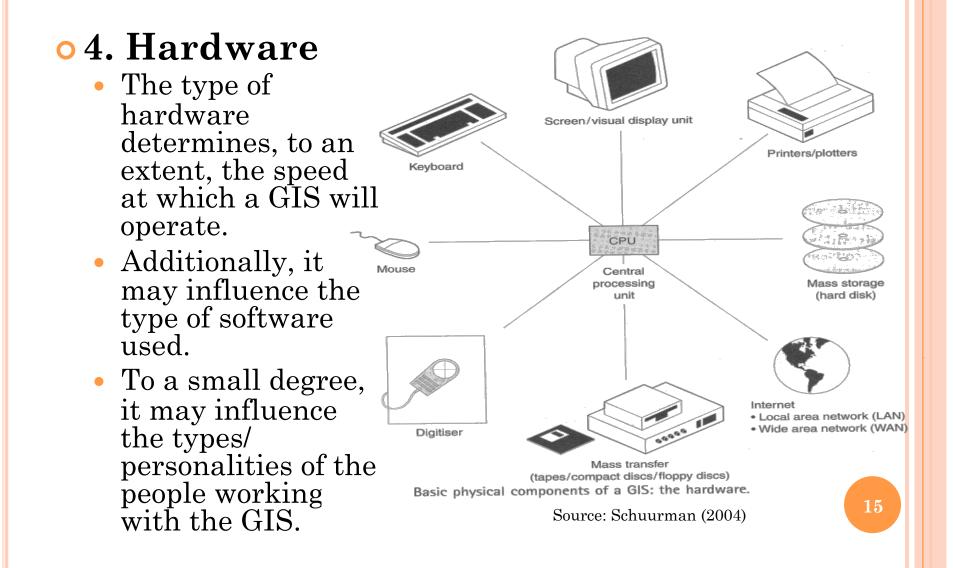
| Obs. Point | GPS    | Reading | Present<br>Landuse | ETM Image<br>2001 | IKONOS         | Topographic<br>Map |
|------------|--------|---------|--------------------|-------------------|----------------|--------------------|
|            | x      | Y       |                    | Class Name        |                | Legend Class       |
| 1          | 351642 | 5783025 | Forest             | Forest            | Forest         | Forest             |
| 18         | 350985 | 5783163 | Bare Land          | Grassland         | Grassland      | Grassland          |
| 17         | 351000 | 5782900 | Arable<br>Land     | Grassland         | Grassland      | Grassland          |
| 20         | 350700 | 5783200 | Forest             | Forest            | Forest         | Forest             |
| 23         | 351100 | 5783000 | Grassland          | Arable<br>Land    | Arable<br>Land | Arable Land        |

Source: Rahman (2009)

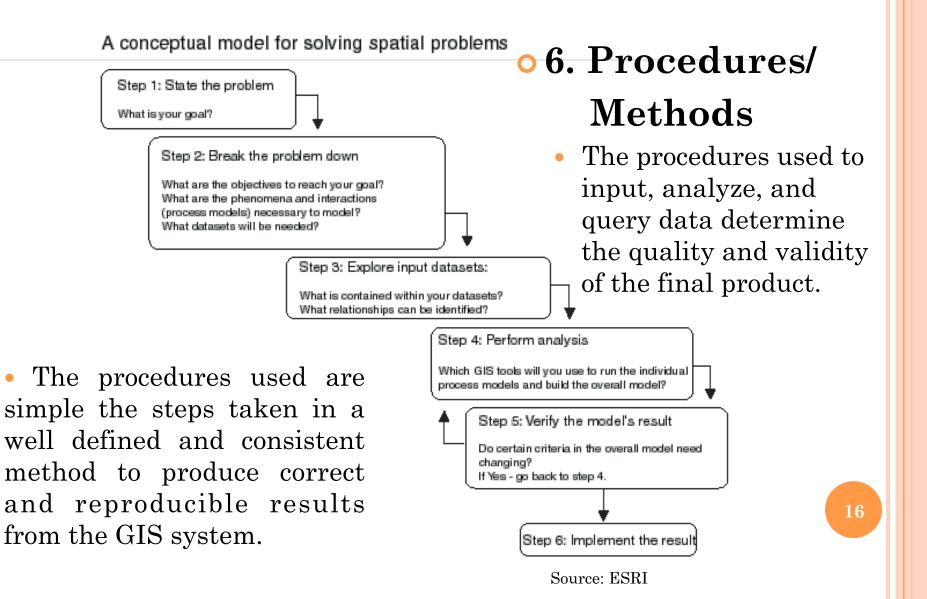
## **BASIC ELEMENTS OF GIS 4/7**



## **BASIC ELEMENTS OF GIS 5/7**


#### o 3. GIS software

- It encompasses not only to the GIS package, but all the software used for databases, drawings, statistics, and imaging.
- The functionality of the software used to manage the GIS determines the type of problems that the GIS may be used to solve.
- The software used *must* match the *needs* and *skills* of the end user.


#### • Popular GIS Software

- Vector-based GIS
  - ArcGIS (ESRI)
  - ArcView
  - MapInfo
- Raster-based GIS
  - Erdas Imagine (Leica)
  - ENVI (RSI)
  - ILWIS (ITC)
  - IDRISI (Clark Univ.)

## **BASIC ELEMENTS OF GIS 6/7**



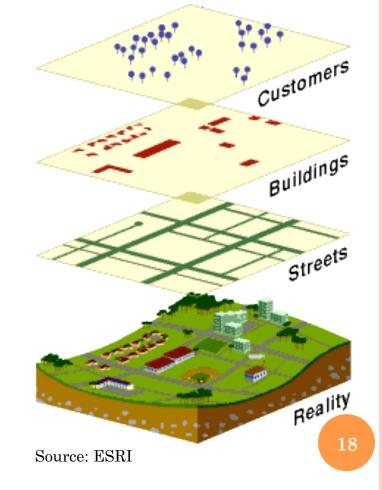
## **BASIC ELEMENTS OF GIS 7/7**

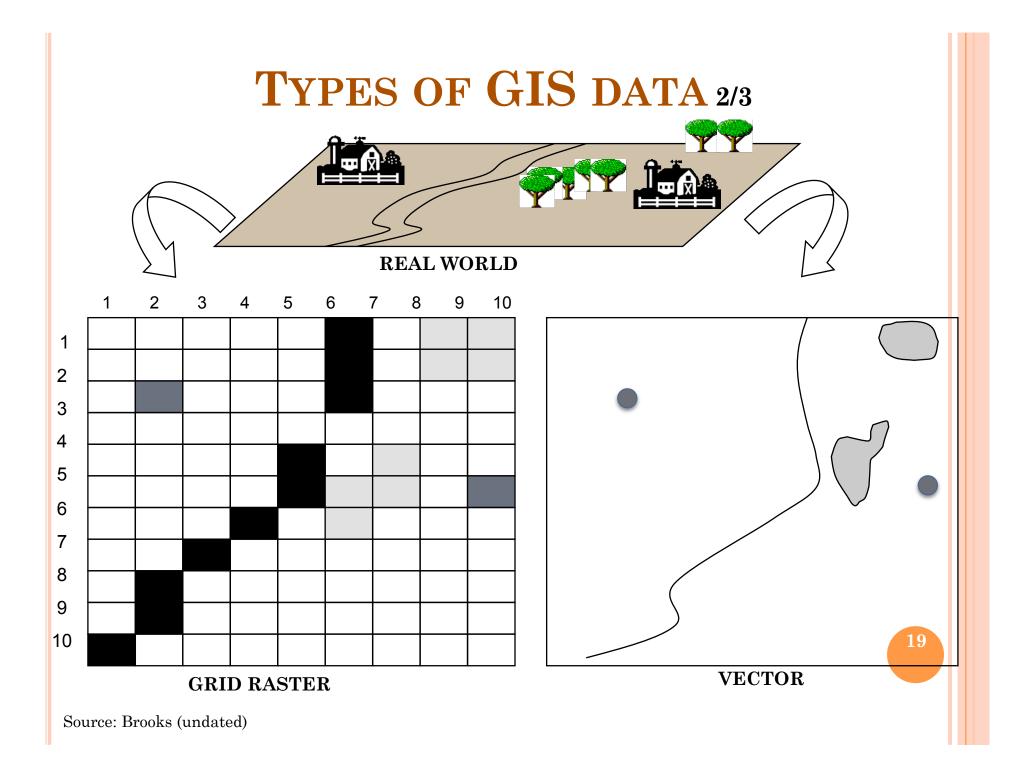


# Types of GIS Data

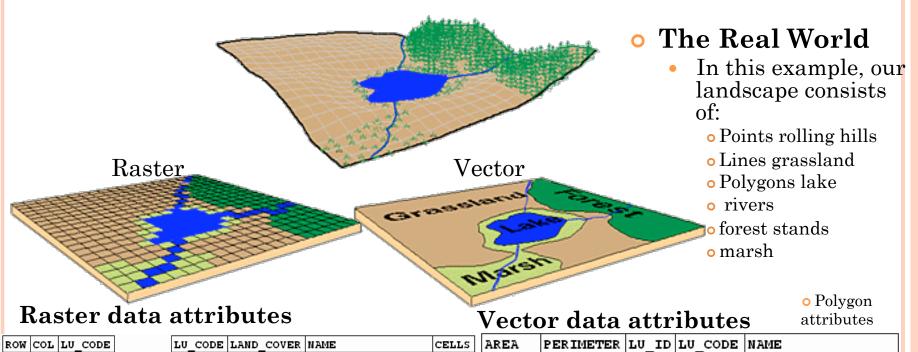
17

# TYPES OF GIS DATA 1/3


#### • Vector


- In the vector data model, features on the earth are represented as:
  - Points
  - Lines
  - Polygons

#### • Raster


- In the raster data model, a geographic feature like land cover is represented as:
  - single square cells
- Attribute
  - Attribite values in a GIS are stored as *relational database* tables.
  - Each feature (point, line, polygon, or raster) within each GIS layer will be represented as a record in a table.

• A GIS stores information about the world as layers of spatial features (customers, buildings, streets, and so





# **TYPES OF GIS DATA 3/3**



| W | COL | LU_COD | Ξ | LU_ | CODE | LAND  | COVER | NAME              | CELLS |
|---|-----|--------|---|-----|------|-------|-------|-------------------|-------|
| 1 | 1   |        | 2 |     | 1    | fores | st    | Sherwood Forest   | 100   |
| 1 | 2   |        | 2 |     | 2    | grass | sland | Marshall Field    | 150   |
| 1 | S   |        | 2 |     | 100  | lake  |       | Blue Lake         | 75    |
| 1 | 4   |        | 2 |     | 3    | marsł | ı     | Okeefenokee Swamp | 55    |
| - |     |        |   |     | 101  | rive  | c     | Suwanee River     | 20    |
| 1 | 19  | 10     | 1 |     |      |       |       |                   |       |

| AREA | PERIMETER | LU_ID | LU_CODE | NAME              |
|------|-----------|-------|---------|-------------------|
| 200  | 500       | 1     | 1       | Sherwood Forest   |
| 1250 | 10000     | 2     | 2       | Marshall Field    |
| 175  | 250       | 3     | 100     | Blue Lake         |
| 100  | 295       | 4     | 3       | Okeefenokee Swamp |

- Each cell has a coordinate representation within the table and a numeric value (i.e., LU\_CODE)
- Each LU\_CODE is associated with a full description through a *relational* join.

Source: http://gis.washington.edu/phurvitz/professional/SSI/attrib.html

| o Line    |       | NAME    | CODE | LU | rn <sup>_id</sup> | LENGTH |
|-----------|-------|---------|------|----|-------------------|--------|
| attribute | River | Suwanee | 101  |    | 4                 | 45     |
|           | River | Suwanee | 101  |    | 5                 | 50     |
| 90        | River | Suwanee | 101  |    | 6                 | 35     |
| - 20      |       |         |      |    |                   |        |

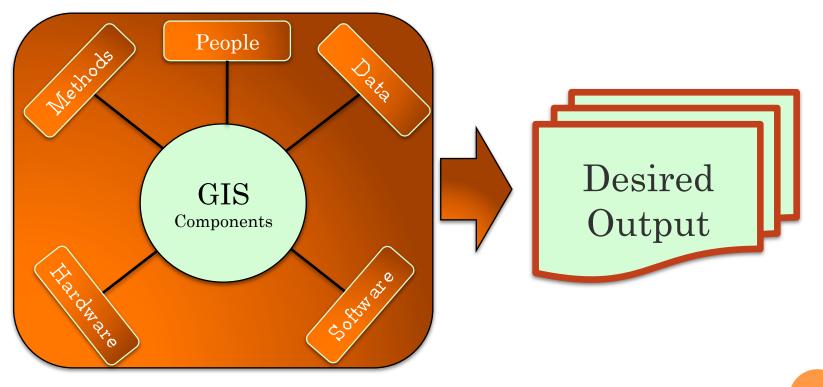
• Because the vector data represent both linear & polygonal features, there are 2 attribute tables.

# Examples of GIS Applications

21

## **EXAMPLES OF GIS APPLICATIONS 1/6**

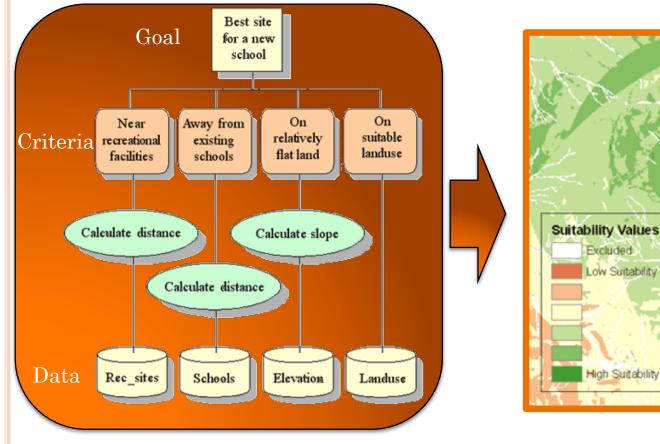
#### • A Framework for GIS Analysis






Source: ESRI

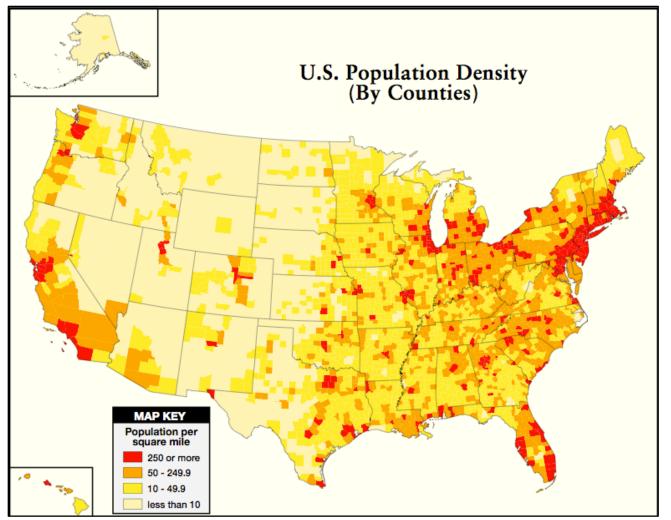
### **EXAMPLES OF GIS APPLICATIONS 2/6**


# • Integrating the five basic elements of GIS to produce the desired output.



Adopted from: <u>http://www.mapsofindia.com/gis/gis-components.html</u> <u>http://bgis.sanbi.org/gis-primer/page\_12.htm</u> http://www.sfu.ca/rdl/GIS/tour/comp\_gis.html 23

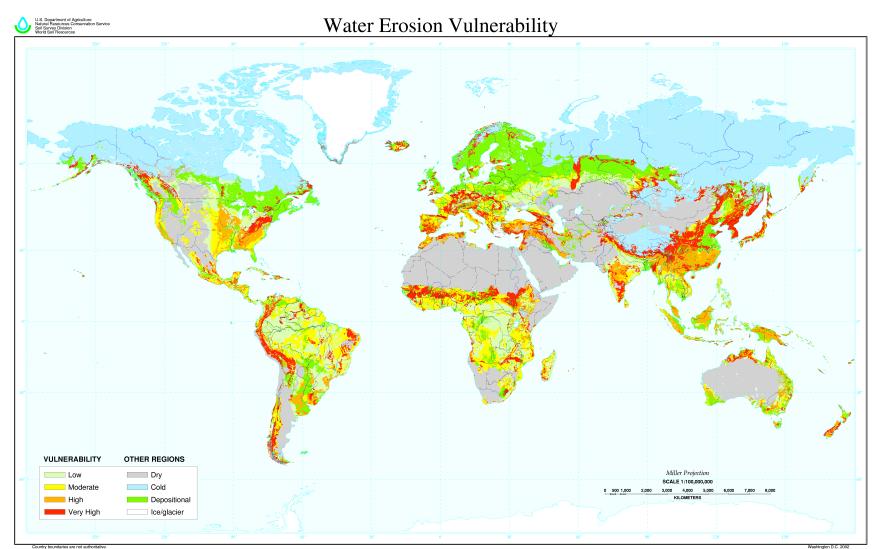
## **EXAMPLES OF GIS APPLICATIONS 3/6**


• Suitability analysis for the best site for a new school



Source: ESRI

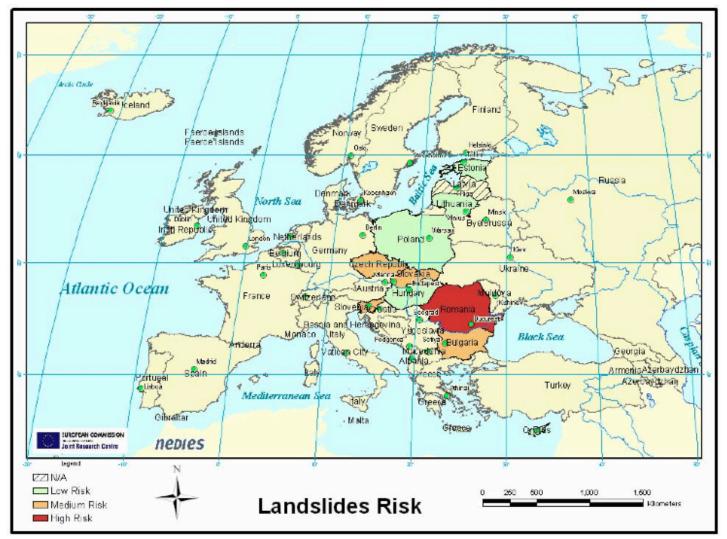
## **EXAMPLES OF GIS APPLICATIONS 4/6**


#### • Mapping population density



25

Source: http://www.census.gov/dmd/www/pdf/512popdn.pdf


## **EXAMPLES OF GIS APPLICATIONS 5/6**



Source: http://soils.usda.gov/use/worldsoils/mapindex/erosh20.html

### **EXAMPLES OF GIS APPLICATIONS 6/6**

#### o Landslide Risk Mapping



27

Source: http://www-eaps.mit.edu/faculty/perron/files/Booth09.pdf

## REFERENCES

- Brooks, T. (undated). Geographic Information Science and Systems. Center for Interdisciplinary Geospatial Information Technologies, Delta State University.
- Goodchild, M.F. (1992). Geographic Information Science.. International Journal of Geographical Information Systems 6(1): 31-45. Reprinted in P.F. Fisher, editor, Classics from IJGIS: Twenty years of the International Journal of Geographical Information Science and Systems. Boca Raton: CRC Press, pp. 181-198. [166]
- Longley, P., Goodchild, M., Maguire, D. & Rhind, D. (2005). Geographic Information Systems and Science. John Wiley & Sons, Ltd, England, UK.
- o Lang, L. (2003). Managing natural resources with GIS. ESRI, CA, USA.
- Lwin, K. & Murayama, Y. (2008). Fundamentals of Remote Sensing and its application in GIS. <u>http://giswin.geo.tsukuba.ac.jp/sis/en/tutoriale.html</u>
- o Maguire, D.J. (2010). GIS: A tool or science. http://www.gisdevelopment.net
- Rahman, M.R. (2009). Landuse Change Analysis of Rutbeek Recreational Area, Netherlands. <u>http://www.gisdevelopment.net</u>
- Schurrman, N. (2004). GIS a short introduction. Blackwell, Oxford.
- o http://www.esri.com
- o http://www-eaps.mit.edu/faculty/perron/files/Booth09.pdf
- o http://soils.usda.gov/use/worldsoils/mapindex/erosh2o.html
- o http://www.census.gov/dmd/www/pdf/512popdn.pdf
- o http://gis.washington.edu/phurvitz/professional/SSI/attrib.html
- o http://www.asdi.com/remote-sensing/applications/ground-truthing
- o http://www.sfu.ca/rdl/GIS/tour/comp\_gis.html
- o http://www.mapsofindia.com/gis/gis-components.html
- o http://www.picsearch.com/pictures/fashion/jewelry/watch%20brands/garmin.html
- o http://bgis.sanbi.org/gis-primer/page 12.htm