HABITAT ECOLOGY

- Animal habitat is the arrangement of food, cover and water required to meet the biological needs of species
- Space and environment suited to a particular species component

COMPONENTS OF A HABITAT

- Cover/shelter
- Space (physiography, extent, alt; Lat.; Long.)
- Energy (food & water)
 - Time (succession, history, evolution)
 - Diversity
 - Associations
 - Interspersion

COMPONENTS OF A HABITAT

1. Cover

- usually implies hiding place: shelter and protection from the weather and other mortality factors
- it is any physical and/or biological arrangement of features that provide shelter from weather & predators

COVER AS A WILDLIFE CONCEPT

- Absence, sparseness and poor distribution of cover affects wild animal populations
- For cover management habitat manipulation is done (burning, clearing planting)
- Cover requirement of animals involves several different arrangement of vegetation or other geomorphic features

TYPES OF COVER

- Protective cover
 - Breeding cover, Escape cover
- Hunting related cover
 - Ambush cover

Types of Cover (by constitution)

- Vegetal covers
 - thick vegetation, large trees, grasslands
- Non-vegetal covers
 - Caves, rocks, burrows, cliffs

ESCAPE COVER

- Escape from predator and hunters open ground, forest edges, rocks, cliff, dense vegetation
- Distance of prey-predator provides flight response time
 - Ibex: never > 100 meters from cliffs
 - Gorals: 80% pellets on slopes>60%

BREEDING COVER /FAWNING COVER

- Carnivores dens
- Herbivore thick vegetation, nests,
 Hard ground Barasingha: In 1960s &
 70s population crashed because of lack of fawning cover (tall grass)

Fussorial: live & feed in the burrows eyes & ears become vestigial sensory organs on the chin. e.g. Naked mole rat

Burrowing: live in burrows but come out to feed e.g Pythons, Porcupines, Hyena

Thermal cover: to escape high temperature; Goral rests under *Bauhinia vahlii* thickets.

Chinkara under P. cineraria

Ambush (Hunting) cover

Carnivores - Tiger, Lion, Leopard; primarily required by stalking predators

TREE CAVITIES:

Bird nesting covers

- Primary users
 - : Woodpeckers, Barbets
- Secondary users
 - : Parakeets, Mynas, Hornbills

ROOSTING COVER

- Day-time (for nocturnal animals)
 - Owls, Civets, Flying squirrels
- Night-time (for diurnal animals)
 - Trees, dens, cavities, open ground

WATER:

Uses

- 1. Base for metabolic activities
- 2. Cooling the body

AVAILABLE TO ANIMAL IN 3 WAYS

- 1. Free water (drinking)
- 2. Metabolic water (oxidation)
- 3. Preformed water (food)

LOSS OF WATER OCCURS

- 1. Maintenance of body temperature (sweat)
- 2. Removal of metabolic waste (urine)
- 3. Through faeces
- 4. Excreted air

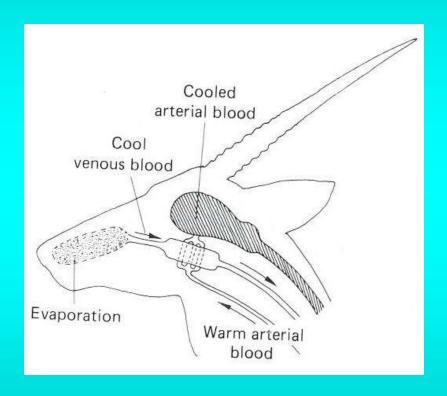
WATER STRESS

Animal vulnerable - Sambar, Chital, Nilgai

Animals with adaptation

- Black Buck, Chinkara,

Water unevenly distributed in wildlife habitat: Seasonal migration - Wilde Beast, Zebra, Elephant, Gaur, Black Buck


Successful breeding depends on water

ADAPTATION FOR WATER CONSERVATION

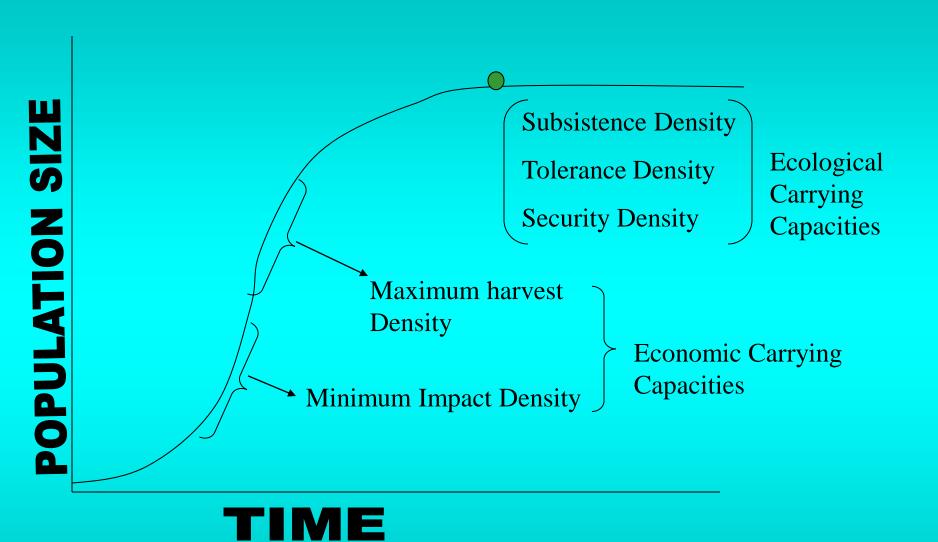
- Nocturnal or Fossorial habits
 - Activities at lower temp. & High hum.
- Concentrating excreta
 - Dry faeces and concentrated urine
- Morphology (thermal inertia)
 - Large body size and abundant insulation
 - Greater insulation on the back
 - Scantily haired body
 - Large pinnae

ADAPTATION FOR WATER CONSERVATION contd.

- Labile body temp.
- Use of metabolic water
- Water storage
 - Rumen storage & quick rehydration
- Mobility
- Patterns of reproduction

SPACE

Carrying capacity:


- Maximum capacity of habitat to support animals, without damaging future capacities
- Carrying capacity is the user specified quality biomass of a particular species or a group of species, under the influence of social and behavioural constraints, for which a particular area having user specified objectives, will supply all energetic and physiological requirement over a long but specified period

TWO TYPES

- : Species specific
- : Composite species

Actual C.C. - Current based on local or temporal factors

Potential C.C. - Theoretical maximum under a given set of natural conditions

Five types of population regulation in relation to the sigmoid population model.

Economic carrying capacity:

•Maximum harvest density: max. No. Of animals a habitat will support while producing a max. Sustained harvestable surplus; good pop. Quality

Minimum Impact Density: minimising the impact on other wildlife or vegetation without eliminating the population; for predators; good pop. Quality

Ecological carrying capacity- unharvested

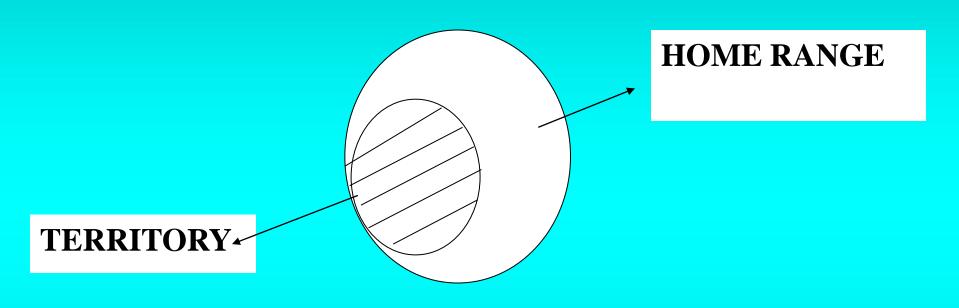
Limiting habitat resources

3 types: subsistence, tolerance, security

Subsistance density

- Usually applied to ungulates
- Pop. Limited primarily by forage
- Natural ecosystem

Tolerance density


- Intrinsic behaviour
- Territorial species

Security density

Predation is the limiting factor

TERRITORY AND HOME RANGE

- Territory relates to a space, which is vigorously defended by an animal
- Home range is the area where animal spends most of his time to secure its requirement for energy (food), shelter, water and breeding space

- Territorial markings: to avoid intraspecific encounters as high intolerance and antagonism exists
- Territoriality is an innate species characteristic: mostly seen in mammals, birds and fishes
- Territories are flexible
- Territorial advertisement : visual, vocalizations, olfactory, defecation

TIGER HOME RANGE (km²)

MALE	FEMALE	LOCATION
60-72	16-20	Chitwan
90-105	26-39	Chitwan
30-35	10-20	Kanha
38-50	12-42	Palamau
800-1000	100-400	USSR

MONITORING OF HOME RANGE IS DONE BY

- 1. Radio tele metry
- 2. Capture mark recapture
- 3. Tracking and mapping routes followed by animal

RADIO - TELEMETRY

Metering without wire connection

• Primarily the location of animals

BIO - TELEMETRY

• Biological Parameters are measured

• Temperature, heart beat, pulse rate, pH of rumen

COMPONENTS

Transmitter

- Weight (mainly due to battery weight)
- Life (with respect to size of battery)
- Smallest transmitter 100 mg, life 2 weeks
- Transmitter weight (+ accessories) should not be more than 4% of body weight

- Frequency range allotted 142 168 M Hz. In India 150 - 152 M Hz. in use
- 0.050 M Hz. separation between two transmitters
- Activity sensor: produces different signals in different activities e.g. resting, moving
- Recapture transmitters: collar with darts, triggered by receiver

Receiver

- Range of reception

Tracking the Radio - Collared Tiger in different Habitats

(Chitwan N.P.); Distances in km

Method	Grassland	Riverine	Sal forest
Elephant	3.2	2.4	0.8
Vehicle	3.2	2.4	0.8
Air	16.0	16.0	13.0
Foot	1.6	1.0	0.4

Antennae

- Directional: H type, Yagi array

- Omni directional: e.g. wireless antennae, use for activity pattern

Collars

- It should be long and smooth so that can be adjusted
- Expandable collars for sub adult animals
- Some degrade after fixed time
- Can be colour coded for easy recognition of animal

- Global positioning systems
- Satellite tracking- for animals (mainly Birds) showing large scale migration
 - Currently used for Olive Ridley Turtles
 - -Siberian Cranes

Habitat Use by Hog Deer in Chitwan NP

Dhungel and O'Gara

Comparison between Grassland, Riverine forest and Sal Forest; 20 Hog Deer's, 3186 transmitter locations

Sex	Grassland	Riverine

Locations forest

Male 99.4 0.6

(N=8)

Female 99.7 0.3

(N=12)

Hog Deer used tall grasslands along rivers where food, water and dense cover are plentiful

INTERSPERSION:

The inter mixing of units of diff' veg' type/habitat types

JUXTAPOSITION:

- Contrast in habitat merging
- It is a measure of proximity of diff' habitats
- Dissimilar habitat units if juxtaposed properly produce increased animal richness

Example

- food adjacent to cover
 - nesting cover adjacent to feeding areas

EDGES

Edge is the place of contact between plant communities or successional stages or habitats

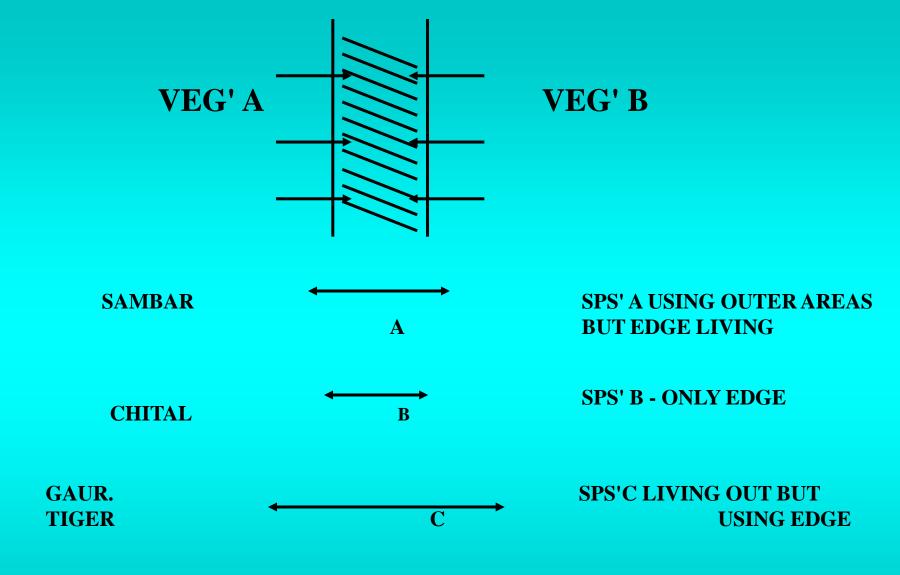
Ecotone: Where two or more communities not only meet but also intergrade

Junction zone; tension belt

ANIMALS SEEK EDGE:

- A) To have simultaneous access to more than one habitat type
- B) Greater access to desirable veg. Choice, cover etc.

'EDGE EFFECT': IS THE SUM OF INFLUENCES OF ALL CHARACTERISTICS OF EDGE


- Composition and diversity of species
- Length and width

Abrupt edge - Lake and forest or sea shore

<u>Inherent edge</u> - Long term relatively stable features produced by natural factors - topography, aspects, type of soil

Induced edge - Management induced edge in forest

Mosaic edge -

MANAGEMENT IMPLICATIONS OF CREATING EDGES

- Smallest edges are created by circular shape,
- Irregular forest edges look more natural

Special habitats

Snags: standing dead trees

Down logs:

Slash: veg' material on forest floor

Cliffs: over hanging rock faces

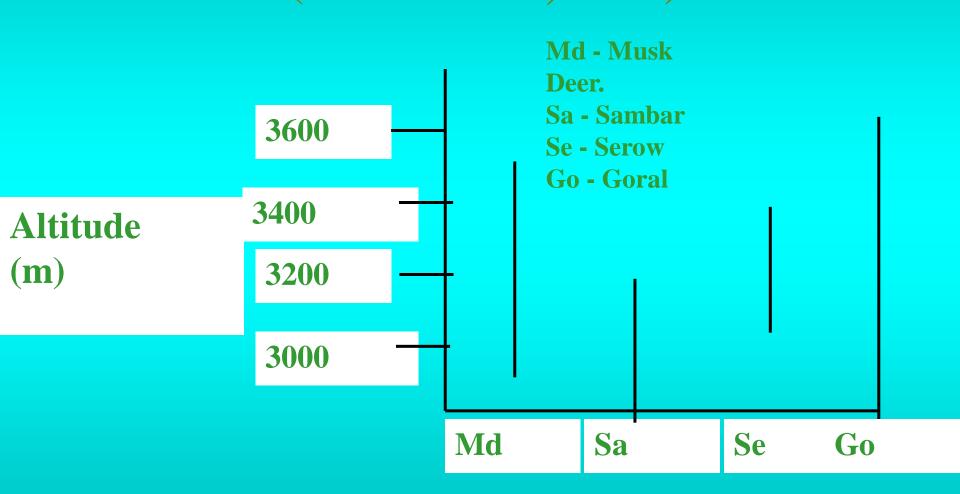
Talus: accumulation of broken rocks at the base of cliff

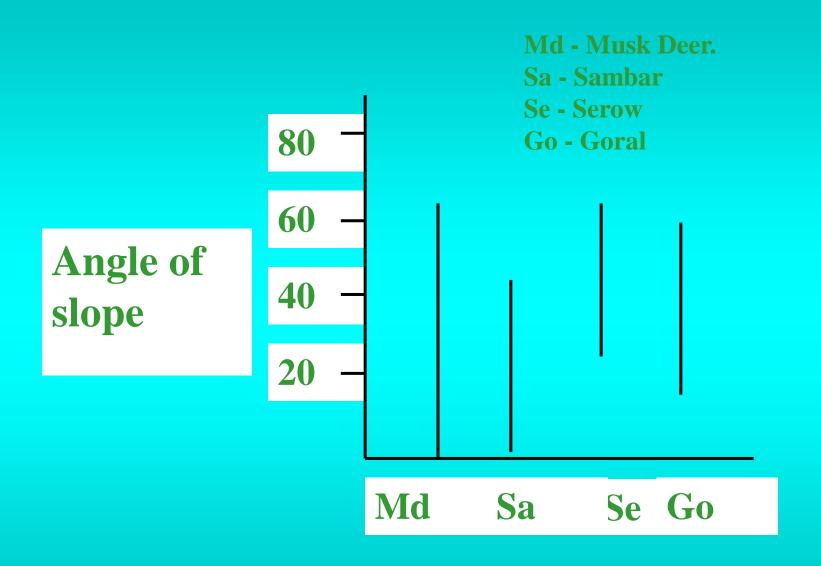
Caves:

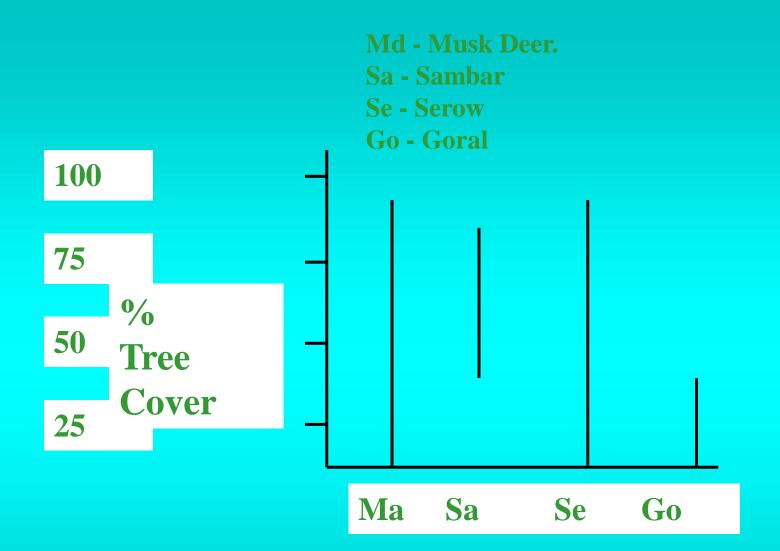
Point habitats/coverts: appear as points on maps

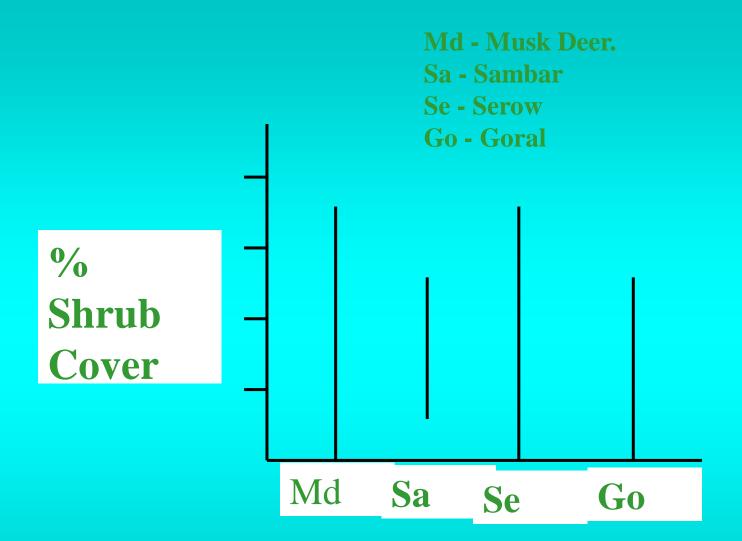
ECOLOGICAL ISOLATION

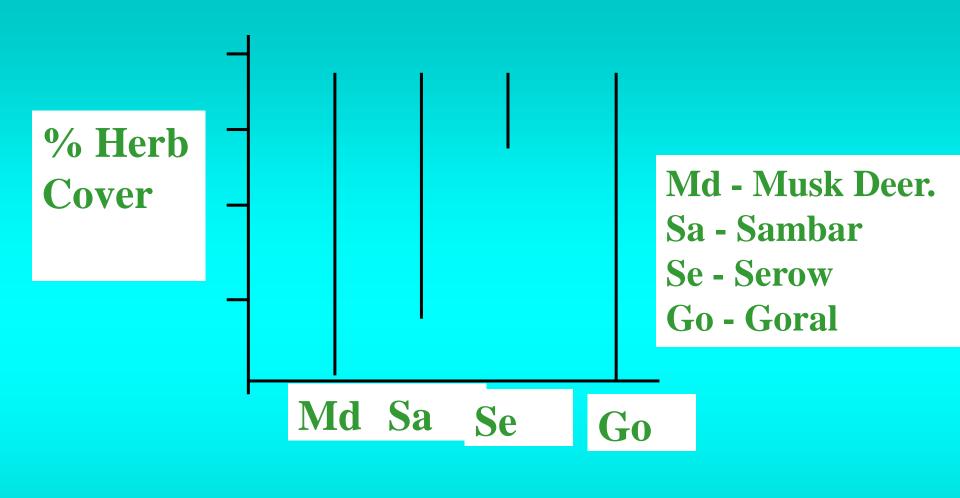
- i) Diff. Habitat types
- ii) Diff. Types of food
- iii) Diff. Area in the same season or vice versa
- iv) Diff. Levels in the veg
- v) Diff. Dry season refuge


GIR CONSERVATION. AREA (BERWICK)


	FOR- EST	THORN SCRUB	SAV- ANNA	RIP.	RIV- ER	HILL SIDE	FL- AT
CHITAL	80	12	3	5	6	12	82
SAMBAR	69	5	10	16	14	51	35
NILGAI	41	29	27	3	5	35	60
HORNED	44	22	33	-	6	61	33
CHINKA	-	12	88	-	-	71	
RA							29


BASED ON SIGHTINGS.


HIMALAYAS - ALTITUDE HAS A LARGE INFLUENCE


Ecological separation of Ungulates in Kedarnath Sanctuary (MJB Green, 1985)

CARNIVORES:

- 1. Habitat
- 2. Activity pattern
- 3. Prey size species, age

ECOLOGICAL SEPARATION OF PREDATORS

- Differential use of habitat
- Prey density & utilization by predation
- Predation and set of prey
- Predation and age of prey

Ecological Separation of Carnivores in Bandipur Tiger Reserve (AJT Johnsingh, 1980)

Ecological & behavioural parameters	Tiger	Leopard	Dhole
Nocturnal	+	+	-
Diurnal	-	-	+
Need for cover	+	+	-
Tolerance for sun	-	+	-

Need for water	+	-	+
Tolerance for human disturbance	0	+	-
Arboreal	-	+	0
Scavenging	-	-	+
Sociability	0	0	+
Inter pack tolerance	-	-	+

- + High- Low
- 0 Absent

PREY-PREDATOR RELATIONSHIPS.

Prey predator ratio (biomass/number)

1: 124 Bandipur

1: 100 Ngorongoro crater

1: 250-300 Serengeti

Table. Prey biomass and Tiger densities.

Study site	Area km ²	Prey biomass kg/km ²	Tiger density No./100	% consumption of prey biomass
Kanha	318	4066	6.92	5.446%
Chitwan	1024	1946	8.78	8-10%
Ranthambore	400	2765	10.0	11.5%
Nagarahole	103	7658	11.65	4.868%

In Serengeti- Lions remove = 4.6 - 5.5 %

All predators = 9-10 %

NICHE

Functional address of the organism in a system w.r.t. to specific parameters.

Or the profession of an organism in the system (activity or parameter)

NICHE WIDTH

High N.W: species is generalist, can survive overlapping of species - with limited resources, the competition will set.

- Broad Niches less species but more numbers
- Narrow Niches more species & less abundance if resources are constant