Point Sampling

Point Sampling

- Sampling unit can be of 2 types :

1. Plot sampling
2. Point sampling
i. Horizontal sampling
ii. Vertical sampling

Point sampling

- Basal area expressed in
$-\quad m^{2}$
- Land area expressed in - Ha
($1 \mathrm{Ha}=10000 \mathrm{~m}^{2}$)
(Basal area / land area) is dimensionless quantity
- Known as Basal Area Factor (BAF)
- Counting from random point, the no of trees whose breast height X-section exceeds a certain critical angle, when multiplied by a constant factor(BAF) gives an unbiased estimates of basal area per Ha

Horizontal point sampling

- Series of sampling points are selected either randomly or systematically
- Sampling points distributed over entire area
- Trees around this point are viewed at breast height through any angle gauge
- All trees forming an angle bigger than the critical angle of the instrument are counted

- Inclusion of trees in tally depends upon
- sizes of trees
- Distance from the observer or sampling point
- Number of trees counted multiplied by a constant factor which is dependent only on the size of angle, gives basal area per Ha
- It can be used to compute the basal areas, volumes and number of trees per unit area
- Basal area per $\mathrm{Ha}=$ no of trees tallied X BAF

(BAF : Basal Area Factor)

- Volume per Ha = Basal area X stand Height
- No of trees per Ha

$$
\begin{gathered}
=\text { BAF / (total basal area of Tally } \\
\text { trees) }
\end{gathered}
$$

Instrument used in Horizontal Point Sampling

- Wedge Prism
- Wedge shaped piece of glass
- Rays of light passing through prism bent depending upon their critical angle
- while standing, Trees are viewed holding the wedge prism in hand
- Prism to be kept in vertical position
- Right angle to the line of sight
- Breast height is then viewed through prism and directly from above it
- Distance between the eye and the prism is immaterial

WEDGE PRISM

- Image of trees follow following 3 conditions:

1. Overlap - Full Tally
2. Just touch - Half Tally
3. Separated from tree stem - No Tally

- Full sweep of 360° is taken
- Note all full and half Tallies
- Take reading at 2 -3 sample points
- Full tallies then counted as - 1
- Half tallies counted as - 0.5
- Total tallies multiplied with BAF to get BA per Ha

CAUTION

$>$ Prism to be held vertically above the sample point
$>$ Each tree is sighted at the b.h. through the prism
> Line of sight should be perpendicular to the prism
$>$ The distance between the prism and the eye should be convenient
$>$ If the prism is not perpendicular to the line of sight it results in fewer tallies.
$>$ If the prism is tilted in the vertical plane - too many tallies

Factors Affecting Accuracy

- Dense stands
- Difficult sighting - a place higher than the breast height can be sighted - if it tallies then the tree is taken as tallied.
- Slope correction
- Up to 15% not necessary
- Trees leaning to left or right - The Wedge Prism should be rotated so that the vertical axis of the prism is parallel to the axis of the leaning tree

DOUBTFUL TREES

- Missing (hidden) trees - The cruiser can sway from side to side.
- Double counting trees - Double counting to be avoided.

Computations from point sampling

1. Basal Area per ha / acre

- No. of full tallying trees $=n_{1}$
- No. of half tallying trees $=\mathrm{n}_{2}$

Therefore no. of tallies, $n=n_{1}+\left(n_{2} / \mathbf{2}\right)$

$$
\text { B.A. per ha }=(n \times \text { B.A.F. })
$$

2. No. of trees per ha

a) No of trees (stems) per ha

$$
\begin{aligned}
N & =\operatorname{BAF} \times\left(1 / \Sigma(B A)_{i}\right) \\
& =(\text { BAF of the prism } / \text { Total basal area of tally trees })
\end{aligned}
$$

b) No. of trees per ha in a particular dia class
$=\left[\right.$ BAF x $\left.\frac{1}{\text { (no of trees) } \times \text { (Basal area of the mid point of the dia class) }}\right]$

Volume per ha / acre

$V=($ B.A. per ha / acre) \times (Stand Form
Height)

Vertical Point Sampling

- Developed by Hirata (Japanese Forester)
- Helps determining the mean stand height

θ : critical angle

Contd.

$\mathrm{n} \quad$: no of trees tallying
$\mathrm{N}:$ no of trees per ha
$>$ The instrument is called as the Conimeter

$$
h=56.4 \sqrt{n / N}
$$

- Eye level height is added to the h to get mean stand height

Advantages of Point Sampling

- No need to lay fixed area plots \longrightarrow time saved
- High value trees sampled in greater proportions
- Basal area and volume per unit area derived without direct measurement of dia.
- Volume determination made in quick time - ideal for reconnaissance survey

Limitations of Point Sampling

- Difficult to compute sampling intensity
- Heavy undergrowth reduces visibility - unsuitable for dense tropical rain forests
- Skilled crew is required
- Small error in tallying gets magnified
- Slope compensation, edge effect, hidden trees, boundary over lap etc. have to be taken care of

Thank you

