Point Sampling

Point Sampling

- Sampling unit can be of 2 types :
 - 1. Plot sampling
 - 2. Point sampling
 - i. Horizontal sampling
 - ii. Vertical sampling

Point sampling

- Basal area expressed in m²
- Land area expressed in Ha

 $(1 \text{ Ha} = 10000 \text{ m}^2)$

(Basal area / land area) is dimensionless quantity

- Known as **Basal Area Factor (BAF)**
- Counting from random point, the no of trees whose breast height X-section exceeds a certain critical angle, when multiplied by a constant factor(BAF) gives an unbiased estimates of basal area per Ha

Horizontal point sampling

- Series of sampling points are selected either randomly or systematically
- Sampling points distributed over entire area
- Trees around this point are viewed at breast height through any angle gauge
- All trees forming an angle bigger than the critical angle of the instrument are counted

- Inclusion of trees in tally depends upon
 - sizes of trees
 - Distance from the observer or sampling point
- Number of trees counted multiplied by a constant factor which is dependent only on the size of angle, gives basal area per Ha
- It can be used to compute the basal areas, volumes and number of trees per unit area

- Basal area per Ha = no of trees tallied X BAF (BAF : Basal Area Factor)
- Volume per Ha = Basal area X stand Height

• No of trees per Ha

= BAF / (total basal area of Tally trees)

Instrument used in Horizontal Point Sampling

- Wedge Prism
 - Wedge shaped piece of glass
 - Rays of light passing through prism bent depending upon their critical angle
 - while standing , Trees are viewed holding the wedge prism in hand
 - Prism to be kept in vertical position
 - Right angle to the line of sight
 - Breast height is then viewed through prism and directly from above it
 - Distance between the eye and the prism is immaterial

WEDGE PRISM

- Image of trees follow following 3 conditions:
 - 1. Overlap Full Tally
 - 2. Just touch Half Tally
 - 3. Separated from tree stem No Tally

- Full sweep of 360° is taken
- Note all full and half Tallies
- Take reading at 2 -3 sample points
- Full tallies then counted as -1
- Half tallies counted as 0.5
- Total tallies multiplied with BAF to get BA per Ha

CAUTION

- > Prism to be held vertically above the sample point
- > Each tree is sighted at the b.h. through the prism
- Line of sight should be perpendicular to the prism
- The distance between the prism and the eye should be convenient
- If the prism is not perpendicular to the line of sight it results in fewer tallies.
- > If the prism is tilted in the vertical plane too many tallies

Factors Affecting Accuracy

Dense stands

- Difficult sighting a place higher than the breast height can be sighted if it tallies then the tree is taken as tallied.
- Slope correction
 - Up to 15% not necessary
- Trees leaning to left or right The Wedge Prism should be rotated so that the vertical axis of the prism is parallel to the axis of the leaning tree

DOUBTFUL TREES

- Missing (hidden) trees The cruiser can sway from side to side.
- Double counting trees Double counting to be avoided.

Computations from point sampling

1. <u>Basal Area per ha/acre</u>

- No. of full tallying trees = n_1
- No. of half tallying trees = n_2

Therefore no. of tallies, $n = n_1 + (n_2/2)$

2. <u>No. of trees per ha</u>

a) No of trees (stems) per ha

 $N = BAF \times (1 / \Sigma(BA)_i)$

=(BAF of the prism / Total basal area of tally trees)

b) No. of trees per ha in a particular dia class

Volume per ha/acre

V = (B.A. per ha / acre) × (Stand Form Height)

Vertical Point Sampling

- Developed by Hirata (Japanese Forester)
- Helps determining the mean stand height

 θ : critical angle

Contd.

- n : no of trees tallying
- N : no of trees per ha

> The instrument is called as the **Conimeter**

- Eye level height is added to the h to get mean stand height

Advantages of Point Sampling

- No need to lay fixed area plots ——> time saved
- High value trees sampled in greater proportions
- Basal area and volume per unit area derived without direct measurement of dia.
- Volume determination made in quick time ideal for reconnaissance survey

Limitations of Point Sampling

- Difficult to compute sampling intensity
- Heavy undergrowth reduces visibility unsuitable for dense tropical rain forests
- Skilled crew is required
- Small error in tallying gets magnified
- Slope compensation, edge effect, hidden trees, boundary over lap etc. have to be taken care of

Thank you