Biometry

Course content

- Measurement of forest crop diameter, height, age and volume,
- Stand structure even aged and uneven aged
- > Management of sample plots
- Forest inventory planning and design alternatives, sampling, execution, compilation and reporting,

- Forest sites- classification and evaluation, quality classes and site index models, stand growth and its current estimation and production – various methods.
- Yield Tables Calculation of current annual increment and mean annual increment of stand, mathematical models.
- Plant and Animal Biomass Estimation: Basic concepts, simple indices of biomass, estimators for actual biomass estimation, sample counts.

Measurements of Forestry

<u>Crops</u>

- 1. Height
- 2. Diameter
- 3. Age
- 4. Volume

Some Learnings from Mensuration

- Measurement of individual tree
 - Diameter, height, age, form, growth etc.
- Basal Area is very well Co-related with volume

Some Learnings from statistics

 Trees should be selected, areas should be selected in such a way that statistical analysis can be carried out

Ultimate Objective ?

Sustainable Forest Management

Object of Sustainable Forest

Management

"Perpetuate Forest

and

Harvest Economic Yields too"

(Sustained Yield)

Sustained Yield

3 types :

- 1. Integral Yield
- 2. Intermittent Yield
- 3. Annual Yield

Commonly,

Sustained Yield ~ Annual Yield

Pre-requistes

1. Estimate of Present Growing Stock:

- Build by individual trees
- Survey/Sampling techniques
- Use statistics

2. Growth Models for Future Production:

- Mathematical
- Empirical

Measurments of Crops

• Different from individual tree

measurments

- Special characteristics of the crop
 - 1. Gradual Diminution of # of Trees
 - 2. Crop Structure
 - 3. Object of Measurement

Determination of Crop Parameters

- 1. Crop Diameter
- 2. Crop Height
- 3. Crop Age
- 4. Crop Volume

Few Important Terms ...

- 1. Stand
- 2. Basal area

1. <u>Stand</u>:

 Some area of forest having similar crop characteristics and Require same treatment
& planning attention

Definition - An area of forest that can be treated as a unit because it has uniform land quality, topography, and species composition • Typically, a stand is no less than 1 ha and no more than 20 ha in area

Forest types – too varied divided into Stand Type - Collection of Stands

4 main features that influence separation of stands

- 1. Extent of stand
 - Intense management
 - Extensive working
- 2. Age of stand
 - Age class interval

- 3. Treatment of stand
 - Use development or treatment class instead of age class
 - Mainly 6 development classes:
 - i. Seedling stage
 - ii. Young pole stage
 - iii. Large pole stage
 - iv. Young timber stage
 - v. Mature timber stage
 - vi. Over mature timber stage

4. Health of stand

- Areas which are damaged by wind, fire, insects etc.
- Their future prospect demands special attention

2. Basal Area

- Definition: The cross sectional area estimated at breast height expressed in m², symbol is g.
- on per ha basis G m² ha⁻¹

Example:

- for young plantations 10-20 m^2 /ha
- tropical average good crop 35 $m^2/\ ha$

 $\left\{ \text{ maximum exceptional 60 m}^2 \right\}$

How to Calculate ?

1. Using Sample Plots:- for plantation

Steps:-

- a) Select representative sample plots
- b) Lay out plots in field
- c) Measure and record diameter frequency table.
 - By measuring all trees in **dia class**
- d) Total B.A. calculated for each plot by \sum B.A. in each dia class.
- e) Avg. B.A./ha calculated by proportion to plot area.

• Problem:

Estimating basal area per hectare using four plots

A=0.01 ha

					i					
d class	f1	f2	f3	f4	g/ tree	f <u>1g</u> m²	f2g m²	f3g m²	f4g m²	Total for 4 plots m ²
СШ					111-					
0-10	1	•	2	-	0.00196	0.00196	•	0.003925	-	0.005888
10-20	1	1	-	1	0.01766	0.01766	0.01766	-	0.01766	0.052988
20-30	2	3	2	2	0.04906	0.09812	0.14718	0.09812	0.09812	0.441563
30-40	5	<mark>4</mark>	<mark>4</mark>	<mark>4</mark> }	0.09616	0.48081	0.38465	0.38465	0.38465	1.634763
40-50	3	3	4	5	0.15896	0.47688	0.47688	0.63585	0.79481	2.384438
<mark>50-60</mark>	-	1	-	2	0.23746	-	0.23746	-	0.47492	1.187313
60-70	2	1	2	2	0.33166	0.66332	0.33163	0.66332	0.66332	2.32163
70-80	-	-	1	-	0.44156	-	-	0.44156	-	0.441563
Total	<mark>15</mark>	<mark>13</mark>	<mark>15</mark>	17		1.73875	1.59546	2.227425	2.43348	7.99522

Cont...

= 7.99522/0.04

= 199.88 m²/ha

Determination of Crop Parameters

- 1. Crop Diameter
- 2. Crop Height
- 3. Crop Age
- 4. Crop Volume

1. <u>Crop Diameter</u>

- Main object is to find out volume
- Volume is dependent on basal area (well corrected)

Crop diameter : <u>Even aged crop</u> Mean diameter : any group of trees or forest Steps:

1. Tabulate field data in dia-classes

Dia class	# of trees	Basal area of mid pt.	Total basal area in dia class
10-20	nl	g1	n1 . gl
20-30	n2	g2	n2. g2
30-40	n3	g3	n3. g3
40-50	n4	g4	n4. g4
50-60	n5	g 5	n5. g5
ith	ni	gi	ni. gi
Total	Σni		∑ ni.gi

M.B.A. = $\sum ni gi / \sum ni$,

$$M.B.A. = \frac{n1gi+n2g2+\dots nigi}{n1+n2+n3+\dots ni}$$

.

• Problem:

Calculate crop diameter using four plots.

A=0.01 ha

d class cm	<mark>f1</mark>	f2	f3	f4	g/ tree m ²	f1g m²	f2g m²	f3g m²	f4g m²	Total for 4 plots m ²
0-10	1	-	2	-	0.00196	0.00196	-	0.003925	-	0.005888
10-20	1	1	-	1	0.01766	0.01766	0.01766	-	0.01766	0.052988
20-30	2	3	2	2	0.04906	0.09812	0.14718	0.09812	0.09812	0.441563
30-40	5	<mark>4</mark>	<mark>4</mark>	<mark>4</mark>	0.09616	0.48081	0.38465	0.38465	0.38465	1.634763
40-50	3	3	4	5	0.15896	0.47688	0.47688	0.63585	0.79481	2.384438
<mark>50-60</mark>	-	1	-	2	0.23746	-	0.23746	-	0.47492	1.187313
60-70	2	1	2	2	0.33166	0.66332	0.33163	0.66332	0.66332	2.32163
<mark>70-8</mark> 0	-	-	1	-	0.44156	-	-	0.44156	-	0.441563
Total	<mark>15</mark>	<mark>13</mark>	<mark>15</mark>	17		1.73875	1.59546	2.227425	2.43348	7.99522

Cont....

$$d_{\overline{g}} = 2 x \underbrace{MBA}_{\overline{X}} = 2 x \begin{bmatrix} 7.99522 \\ 60 \end{bmatrix} \frac{x 1}{\overline{X}}$$

 $d_{g} = 41.2 \text{ cm}$

• Similarly from above table arithmetic mean dia can be calculated Arithmetic Mean dia= $\sum_{\sum ni} ni di$ $\sum_{ni} ni$

Crop dia < = > Arithmetic Mean dia ?

Top diameter :- diameter corresponding to the M.B.A. of 250 biggest diameter/ha

2. <u>"Determination of Height of</u>

<u>Crop"</u>

- 2 terms :
- 1. Crop height:
 - avg weighted(basal area) ht of of a regular crop
 - (Lorey's formula)

Determination of Crop Height :

Steps-

Tabulate data:

Dia classes	Basal area observed	Average height
10-20	G 1	h1
20-30	G2	h2
30-40	G3	h3
40-50	G4	h4
50-60	G5	h5
60-70	G6	h6
ith	Gi	hi

Gi - Total basal area in each group (Calculated from measured values)

hi – average (Arithmetic mean) height in each dia class

Lorey's Formula : $\sum_{i=1}^{n} G_{i} f_{i}$ Crop height = $\sum_{i=1}^{n} G_{i} f_{i}$ (G₁h₁ + G₂h₂.....Gihi)

 $(G_1 + G_2 + \dots G_i)$

It is the height corresponding to the crop diameter of the stand

Steps:

a) draw ht. Vs dia curve for the standb) In order to draw the graph firsttabulate the data diameter class wise:

Col 1	Col 2	Col 3	
	ht	Avg. Hts.	
10-20	h1' h2'hi	<u>h</u> 1'	
20-30	h1" h2"hi"	h1"	
30-40	H1"" h2"'…hi""	h1"	
h th	h1 ⁿ h2 ⁿ hi ⁿ	h1 ⁿ	

- c) Calculate M.B.A. for stand
- d) Then calculate crop diameter
- e) Read height from graph \longrightarrow mean height
- Crop and/or mean height used for Volume calculation
- > For site quality

Top height

'Height corresponding to the mean diameter(calculated from basal area) of 250 biggest diameters per ha as read from height diameter curve'

3. Determination of Age of Crop

- Even aged
- Un-Even aged

Even aged and Un-even aged Stand

Even Aged Stand:

✓ Trees approximately of same age

 \checkmark Age variation less than 25% rotation age

Un-even Aged Stand:

✓ Individual stem vary widely in age

 \checkmark Age variation is more than 25% of rotation age

Uneven-aged: a stand with trees of three or more distinct age classes, either intimately mixed or in small groups.

Two-aged: a stand with trees of two distinct age classes separated in age by more than plus or minus 25% of the rotation age.

Even-aged: a stand composed of a single age class of trees in which the range of tree ages is usually plus or minus 25% of the rotation age.

Even aged and Un-even aged forest

• Even aged forest :

 Has stands of different ages till maturity but one stand has trees of one age

- Un Even aged forest:
 - Each stand has trees of all ages –Selection Forest

Silvicultural system

- Broadly classified in to 2 main groups :
 - I. Even aged system
 - Clear cutting
 - Shelterwood
 - Management based on

- II. Un-Even aged system
 - Selection
- Management based on
 - Size

[–] Age

After rotation period Even aged forest needs regeneration

Uneven aged forests: new recruits continuously coming

 ✓ Productivity (Timber) (Quantity) wise even aged is better than uneven aged.
 Quality wise uneven aged may be

better.

Age (for even aged)

- The age of even aged crop is described by the term "Crop Age"
- Crop Age: Age of regular crop corresponding to its crop diameter
- Method:
 - a) Get basal area of the crop
 - b) Get crop dia
 - c) Plot Age-dia curve
 - d) Read age corresponding crop dia

• If Age variation in crop is more:-

• Method:

a) Break Area into smaller area of even aged group

b) Get Si, basal area of each plotc) Get ai, age of each age group(as dealt in Crop Age)

Age (for Un-Even aged)

- Difference of opinion
 - a. Indian Forest and Forest Products Terminology,
 Part I- Forest
 - The average age of dominant trees in a crop
 - b. Europe
 - That period which an even aged wood requires to produce the same volume as the un-even aged wood

Determination of Crop Parameters

- 1. Crop Diameter
- 2. Crop Height
- 3. Crop Age
- 4. Crop Volume

4. Determination of Volume

By means of small sampling units :

Two Methods-

Method 1 : direct measurment of Volume by felling or

measuring volume of each standing tress

: 1 (A) & 1 (B)

Method 2 : indirect estimate using volume table

Method 1

 (\mathbf{A})

n m $\sum \sum \left[\mathbf{Vij} \right]$ m1 mn n.a nth \mathbf{V} : Avg. Vol. per ha, m² Vij : Volume of individual tree in *i*th plot m2 \sum **mi** : Total no. of trees in ith plot # of trees **n** : Total no of plots.

: Area of samples plot m^2

a

53

• Problem 1 : Calculation of volume per hectare

• Solution:-

In an inventory of a stand of *Pinus Patula* the following data were collected. n=5

a=0.005 ha

Trees	1	2	3	4	5	Total			
Plots	Volum	Volumes (m³ tree)							
1	0.42	0.36	0.39	0.27	-	1.44			
2	0.38	0.37	0.41	0.40	0.41	1.97			
3	0.29	0.36	0.31	0.34	-	1.30			
4	0.41	0.36	0.34	0.33	-	1.44			
5	0.30	0.40	0.39	0.27	-	1.36			
n m									
∑∑v _{ij} =7.51	m ³								
n m									
$\sum \sum v_{ij}$	-	7.51							
V =	=		- = 3	00 m³ ha ⁻	1				
na	(5) (0.005)							

Method 1 (B)

• If sub sampling for volume is practised:

<u>3 methods</u>

- 1. Mean tree method
- 2. Mean Form Height method
- 3. Regression of volume on basal area method

1. "Mean tree method"

Steps:

- a) Layout sample plot (SP)
- b) count trees in SP
- c) Select a sub sample
- d) Measure all trees in sub sample for **v**, volume
- e) Calculate volume of average tree in sub sample
- f) Multiply number of trees in sample plot with volume of average tree in sub sample

1. Calculate

$v_i = ---- m^3 per tree$

 S_i (s_i: no of trees in sub sample in plot i)

$$v_i = m_i \overline{v_i}$$

 $\sum V$

m³ in plot I, (m: no of trees in sample plot)

vol. per ha, V=
$$\sum Vi$$

n x a

n : no of Sample Plots

• In an inventory of a stand of *Pinus Petula* the following data were collected

• N=5, a= 0.01 ha. m_i = Total # of trees in ith plot, s_i = no of trees in sub sample of plot i

i	m _i	S _i	V _{ik}	Σv _{ik}	V i	V i	
			m ³	m³	m ³	m ³	
1	10	4	0.14	0.48	0.120	1.2	
			0.12				
			0.13				
			0.09				
2	12	4	0.13	0.52	0.130	1.56	
			0.12				
			0.14				
			0.13				
3	9	3	0.11	0.43	0.143	1.29	
			0.12				
			0.20				
4	11	4	0.10	0.45	0.113	1.24	
			0.13				
			0.13				
			0.09				
5	12	2	0.28	0.48	0.240	2.88	
			0.20				
Tot	=54	17		2.36		8.17	

8.17 V = $----= 163 \text{ m}^3 \text{ ha}^{-1}$ (5) (0.01)

2. "Mean Form Height method"

Steps:

- a) Layout sample plot (SP)
- b) Measure diameter of each tree in SP
- c) Select a sub sample
- d) Measure all trees in sub sample for **d**, **g**, **v**, (i.e. dia, basal area, volume)
- e) Calculation may be done in 2 ways

- 1. Calculate $\sum g$, $\sum v$
- \implies mean form height, $\overline{fh} = --$ (for each plot) $\sum g$

$$\sum Vi = \sum (g) x \overline{fh}$$

$$\sum Vi$$

vol. per ha, V= _____, n : no of Sample Plots
n x a

 $\sum V$

• Problem 2: Calculation of volume per hectare

• In an inventory of a stand of *Pinus Petula* the following data were collected

• N=5, a= 0.01 ha. m_i = Total # of trees in ith plot, s_i = no of trees in sub sample of plot i

		m _i					S _i	S _i	
i	m _i	Σg _{ij}	s _i	d _{ik}	g _{ik}	V _{ik}	Σg _{ik}	Σv _{ik}	fh _i
		m²		cm	m²	m³	m²	m³	
1	10	0.124	4	13.4	0.014	0.14	0.049	0.48	9.80
				11.8	0.011	0.12			
				13.4	0.014	0.13			
				11.3	0.010	0.09			
2	12	0.132	4	12.9	0.013	0.13	0.053	0.52	9.81
				12.4	0.012	0.12			
				13.8	0.015	0.14			
				12.9	0.013	0.13			
3	9	0.119	3	11.3	0.010	0.11	0.044	0.43	9.77
				12.9	0.013	0.12			
				16.4	0.021	0.20			
4	11	0.100	4	10.7	0.009	0.10	0.044	0.45	10.23
				11.8	0.011	0.13			
				13.4	0.014	0.13			
				11.3	0.010	0.09			
5	12	0.140	2	19.9	0.031	0.28	0.048	0.48	10.00
				14.7	0.017	0.20			
Tot	t= 54	0.615	17				0.238	2.36	

Cont...

i	m _i ∑g _{ij}	fh _i	v _i	
1	0.124	<u>9.8</u> 0	1.22	
2	0.132	9.81	1.29	
3	0.119	9.77	1.16	
4	0.100	10.23	1.02	
5	0.140	10.00	1.40	
t	otal: 0.615		6.09 m ³ in 0.05 ha	a
			6.09	
		V = -	$= 121.8 \text{ m}^3 \text{ k}$	1a⁻¹
			(5) (0.01)	

3. <u>Regression of Volume on Basal Area</u> <u>Method:</u>

As in previous problem

Steps:

- a) Take a Sample and sub samples
- b) Measuring of **d** , **g** ,**v** on sub sample trees
- c) Pool the data
- e) Hypothesize linear fit

 $v_{ik} = a + b (g_{ik}) \qquad m^3/tree$

 $v_i = m_i a + b \sum g_{ij} m^3/plot$

Cont....
$$\begin{bmatrix} n & n m_{i} \\ \sum m_{i} \cdot a + b \sum \sum g_{i} j \end{bmatrix}$$
$$V = \frac{m^{3}}{ha}$$

Here- a, b are regression const.

r= Area of sampling units m;= Total # of trees in ith plot n= Total no. of plots.

Regression eq. Y = a + b. x

• Problem 2 : Calculate of volume per hectare

• Solution:-

 Using the same data as in the previous examples, the volume on basal area regression is calculated and volume per hectare derived using the regression:
 N=17

V _{ik}	g _{ik}	(g _{ik}) ^{2.} 10 ³	(v _{ik} g _{ik})·10 ²	
0.14	0.014	0.196	0.196	
0.12	0.011	0.121	0.132	
0.13	0.014	0.196	0.182	
0.09	0.010	0.100	0.090	
0.13	0.013	0.169	0.169	
0.12	0.012	0.144	0.144	
0.14	0.015	0.225	0.210	
0.13	0.013	0.169	0.169	
0.11	0.010	0.100	0.110	
0.12	0.013	0.169	0.156	
0.20	0.021	0.441	0.420	
0.10	0.009	0.081	0.090	
0.13	0.011	0.121	0.143	
0.13	0.014	0.196	0.182	
0.09	0.010	0.100	0.090	
0.28	0.031	0.961	0.868	
0.20	0.017	0.289	0.340	
2.36	0.238	3.778	3.691	72
Cont.....

a = **v** - **b g** = 0.14 - 8.677 x 0.014 = 0.018

m³ per tree

Cont..... result of previous problem :

 $\begin{array}{ccc} n & n \\ \sum v_i &= \sum m_i & a + b \\ \end{array} \begin{array}{c} n & m \\ \sum \sum g_{ij} \end{array} \end{array}$

= 54 (0.018) + (8.677)(0.615) = 6.308, m³ in 0.05 ha

V = 6.308/((5)(0.01)) = 126, m³ ha⁻¹

Method 2: with the help of volume tables Steps:

a) Take a sample

b) Make a frequency table

1.	
2.	

s.n. dia classes # of trees

c) Read volume corresponding to mid point of dia class 75

- d) Multiply volume by # of trees and sum to arrive at volume of the sample plot.
- e) Get an estimate of volume of whole forest.