Biometry

Course content

$>$ Measurement of forest crop - diameter, height, age and volume,
$>$ Stand structure - even aged and uneven aged
$>$ Management of sample plots
$>$ Forest inventory - planning and design alternatives, sampling, execution, compilation and reporting,

- Forest sites- classification and evaluation, quality classes and site index models, stand growth and its current estimation and production - various methods.
$>$ Yield Tables - Calculation of current annual increment and mean annual increment of stand, mathematical models.
$>$ Plant and Animal Biomass Estimation: Basic concepts, simple indices of biomass, estimators for actual biomass estimation, sample counts.

Measurements of Forestry Crops

1. Height
2. Diameter
3. Age
4. Volume

Some Learnings from Mensuration

- Measurement of individual tree
- Diameter, height, age, form, growth etc.
- Basal Area is very well Co-related with volume

Some Learnings from statistics

- Trees should be selected, areas should be selected in such a way that statistical analysis can be carried out

Ultimate Objective ?

Sustainable Forest Management

Object of Sustainable Forest

Management

"Perpetuate Forest

and

Harvest Economic Yields too"
(Sustained Yield)

Sustained Yield

3 types:

1. Integral Yield
2. Intermittent Yield
3. Annual Yield

Commonly,
Sustained Yield ~ Annual Yield

Pre-requistes

1. Estimate of Present Growing Stock:

- Build by individual trees
- Survey/Sampling techniques
- Use statistics

2. Growth Models for Future Production:

- Mathematical
- Empirical

Measurments of Crops

- Different from individual tree measurments
- Special characteristics of the crop

1. Gradual Diminution of \# of Trees
2. Crop Structure
3. Object of Measurement

Determination of Crop Parameters

1. Crop Diameter
2. Crop Height
3. Crop Age
4. Crop Volume

Few Important Terms ...

1. Stand
2. Basal area

1. Stand :

- Some area of forest having similar crop characteristics and Require same treatment \&\% planning attention

Definition - An area of forest that can be treated as a unit because it has uniform land quality, topography, and species composition

- Typically, a stand is no less than 1 ha and no more than 20 ha in area

Forest types - too varied
divided into
Stand Type - Collection of Stands

4 main features that influence separation of stands

1. Extent of stand

- Intense management
- Extensive working

2. Age of stand

- Age class interval

3. Treatment of stand

- Use development or treatment class instead of age class
- Mainly 6 development classes:
i. Seedling stage
ii. Young pole stage
iii. Large pole stage
iv. Young timber stage
v. Mature timber stage
vi. Over mature timber stage

4. Health of stand

- Areas which are damaged by wind, fire, insects etc.
- Their future prospect demands special attention

2. Basal Area

- Definition: The cross sectional area estimated at breast height expressed in m^{2}, symbol is g .
- on per ha basis G $\mathrm{m}^{2} \mathrm{ha}^{-1}$

Example:

- for young plantations $10-20 \mathrm{~m}^{2}$ /ha
- tropical average good crop $35 \mathrm{~m}^{2} / \mathrm{ha}$
maximum exceptional $\left.60 \mathrm{~m}^{2} / \mathrm{ha}\right\}$

How to Calculate?

1. Using Sample Plots:- for plantation

Steps:-
a) Select representative sample plots
b) Lay out plots in field
c) Measure and record diameter frequency table.

- By measuring all trees in dia class
d) Total B.A. calculated for each plot by \sum B.A. in each dia class.
e) Avg. B.A./ha calculated by proportion to plot area.

- Problem:

Estimating basal area per hectare using four plots

$\mathrm{A}=0.01 \mathrm{ha}$

$\begin{gathered} \text { d } \\ \text { class } \\ \text { crnı } \end{gathered}$	fil	¢2	f3	Fff	$\begin{aligned} & \text { g/ } \\ & \text { tree } \\ & \left.\mathrm{cm}^{2}\right)^{2} \end{aligned}$	$f 19$	f2g	$\begin{aligned} & \mathrm{f} 3 \mathrm{~g} \\ & \mathrm{mr})^{2} \end{aligned}$	$\begin{aligned} & \mathrm{f} 4 \mathrm{~g} \mathrm{~g} \\ & \mathrm{rs})^{2} \end{aligned}$	Total for 4 plots m²
0-10	1	-	2	-	0.00196	0.00196	-	0.003925	\bullet	0.005888
10-20	1	1	-	1	0.01766	0.01765	0.01766	-	0.01766	0.052988
20-30	2	3	2	2	0.04906	0.09812	0.14718	0.09812	0.09812	0.441563
30-40	5	4	4	4	0.09616	0.48081	0.38455	0.38465	0.38465	1.634763
40-50	3	3	4	5	0.15896	0.47688	0.47688	0.63585	0.79481	2.384438
50-60	-	1	-	2	0.23746	-	0.23745	-	0.47492	1.1873:13
60-70	2	1	2	2	0.33166	0.66332	0.33163	0.66332	0.66332	2.32163
70-80	-	-	1	-	0.44156	-	-	0.44ㄱ1156	-	0.4411563
Total	15	13	15	17		1.73875	1.59546	2.227425	2.43348	7.99522

Cont...

$\mathrm{n} \quad \mathrm{m}$
$G=\frac{\sum \sum g_{i j}}{n} \mathrm{~m}^{3} / h a$ and
$=7.99522 / 0.04$
$=199.88 \mathrm{~m}^{2} / \mathrm{ha}$

Determination of Crop Parameters

1. Crop Diameter
2. Crop Height
3. Crop Age
4. Crop Volume

1. Crop Diameter

- Main object is to find out volume
- Volume is dependent on basal area (well corrected)

Crop diameter : Even aged crop
Mean diameter : any group of trees or forest

Steps:

1. Tabulate field data in dia-classes

Dia class	\# of trees	Basal area of mid pt.	Total basal area in dia class
10-20	n1	g1	n1.g1
20-30	n2	g2	n2. g2
30-40	n3	g3	n3. g3
40-50	n4	g4	n4. g4
50-60	n5	g5	n5.g5
ith	ni	gi	ni. gi
Potel	$\sum \mathrm{ni}$		$\sum \mathrm{ni} . \mathrm{gi}$

$$
\begin{aligned}
& \text { M.B.A. }=\sum \mathrm{ni} \mathrm{gi} / \sum \mathrm{ni}, \\
& \text { M.B.A. }=\frac{\mathrm{n} 1 \mathrm{gi}+\mathrm{n} 2 \mathrm{~g} 2+\ldots \ldots \ldots \ldots . \mathrm{nigi}}{\mathrm{n} 1+\mathrm{n} 2+\mathrm{n} 3+\ldots \ldots \ldots \ldots . . \mathrm{ni}}
\end{aligned}
$$

$$
\begin{aligned}
\text { M.B.A. } & \left.=\frac{\pi}{*}\right)^{\text {crop diameter }} \\
& =\frac{\pi}{4} \times(\text { crop dia) })^{2}
\end{aligned}
$$

- Problem:

Calculate crop diameter using four plots.

$\mathrm{A}=0.01 \mathrm{ha}$

$\begin{gathered} \text { d } \\ \text { class } \\ \text { crnı } \end{gathered}$	fil	¢2	f3	Fff	$\begin{aligned} & \text { g/ } \\ & \text { tree } \\ & \left.\mathrm{cm}^{2}\right)^{2} \end{aligned}$	$f 19$	f2g	$\begin{aligned} & \mathrm{f} 3 \mathrm{~g} \\ & \mathrm{mr})^{2} \end{aligned}$	$\begin{aligned} & \mathrm{f} 4 \mathrm{~g} \mathrm{~g} \\ & \mathrm{rs})^{2} \end{aligned}$	Total for 4 plots m²
0-10	1	-	2	-	0.00196	0.00196	-	0.003925	\bullet	0.005888
10-20	1	1	-	1	0.01766	0.01765	0.01766	-	0.01766	0.052988
20-30	2	3	2	2	0.04906	0.09812	0.14718	0.09812	0.09812	0.441563
30-40	5	4	4	4	0.09616	0.48081	0.38455	0.38465	0.38465	1.634763
40-50	3	3	4	5	0.15896	0.47688	0.47688	0.63585	0.79481	2.384438
50-60	-	1	-	2	0.23746	-	0.23745	-	0.47492	1.1873:13
60-70	2	1	2	2	0.33166	0.66332	0.33163	0.66332	0.66332	2.32163
70-80	-	-	1	-	0.44156	-	-	0.44ㄱ1156	-	0.4411563
Total	15	13	15	17		1.73875	1.59546	2.227425	2.43348	7.99522

Cont....

$$
\begin{aligned}
& \text { M.B.A. }=\frac{\sum n_{i} \cdot g_{i}}{\sum n_{i}}=\frac{7.99522}{60} \mathrm{~m}^{2} \text { in } 0.04 \text { ha, } \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{g}}=2 \times \sqrt{\frac{\mathrm{MBA}}{\pi}}=2 \times \sqrt{\left[\frac{7.99522}{60}\right] \times \frac{1}{\pi}} \\
& \mathrm{~d}_{\mathrm{g}}=0.412 \mathrm{~m} \\
& \mathrm{~d}_{\mathrm{g}}=41.2 \mathrm{~cm}
\end{aligned}
$$

- Similarly from above table arithmetic mean dia can be calculated

$$
\sum \mathrm{ni} \mathrm{di}
$$

Arithmetic Mean dia=

$$
\sum \mathrm{ni}
$$

Crop dia $<=>$ Arithmetic Mean dia ?

Top diameter :- diameter corresponding to the M.B.A. of 250 biggest diameter/ha

2. "Determination of Height of

Crop"

2 terms:

1. Crop height:

- avg weighted(basal area) ht of of a regular crop
(Lorey's formula)

Determination of Crop Height :

Steps-
Tabulate data:

Dia classes	Basal area observed	Average height
$10-20$	G 1	h 1
$20-30$	G 2	h 2
$30-40$	G 3	h 3
$40-50$	G 4	h 4
$50-60$	G 5	h 5
$60-70$	G 6	h 6
ith	$\mathrm{G} i$	hi

Gi - Total basal area in each group (Calculated from measured values)
hi - average (Arithmetic mean) height in each dia class

Lorey's Formula :

$$
\sum \text { Gi hi }
$$

Crop height =

$$
\sum \mathrm{Gi}
$$

$$
\left(\mathrm{G}_{1} \mathrm{~h}_{1}+\mathrm{G}_{2} \mathrm{~h}_{2} \ldots \ldots \ldots \ldots \mathrm{Gihi}\right)
$$

2. Mean Height:

It is the height corresponding to the crop diameter of the stand

Steps:

a) draw ht. Vs dia curve for the stand
b) In order to draw the graph first tabulate the data diameter class wise:

Col 1	$\begin{gathered} \mathrm{Col} 2 \\ \mathrm{ht} \end{gathered}$	$\begin{gathered} \text { Col } 3 \\ \text { Avg. Hts. } \end{gathered}$
10-20	h1' h2'....hi	h 1^{\prime}
20-30	h1" h2"...hi"	h1"
30-40	H1"' ${ }^{\text {2 }}$ ', ...hi"	h1"'
$h^{\text {th }}$	$h 1^{\mathrm{m}} \mathrm{h} 2^{\mathrm{n}} \ldots . . . h^{\text {m }}$	$h^{11^{n}}$

Plot mid point of dia class Vs Avg. ht.

c) Calculate M.B.A. for stand
d) Then calculate crop diameter
e) Read height from graph \longrightarrow mean height

- Crop and/or mean height - used for Volume calculation
$>$ For site quality

Top height

'Height corresponding to the mean diameter(calculated
from basal area) of 250 biggest diameters per ha as read from height diameter curve'

3. Determination of Age of Crop

- Even aged
- Un-Even aged

Even aged and Un-even aged Stand

Even Aged Stand:
\checkmark Trees approximately of same age
\checkmark Age variation less than 25% rotation age
Un-even Aged Stand:
\checkmark Individual stem vary widely in age
\checkmark Age variation is more than 25% of rotation age

Uneven-aged: a stand with trees of three or more distinct age classes, either intimately mixed or in small groups.

Two-aged: a stand with trees of two distinct age classes separated in age by more than plus or minus $\mathbf{2 5 \%}$ of the rotation

Even-aged: a stand composed of a single age class of trees in which the range of tree ages is usually plus or minus $\mathbf{2 5 \%}$ of the rotation age.

Even aged and Un-even aged forest

- Even aged forest :
- Has stands of different ages till maturity but one
stand has trees of one age
- Un Even aged forest:
- Each stand has trees of all ages -Selection Forest

Silvicultural system

- Broadly classified in to 2 main groups :
I. Even aged system
- Clear cutting
- Shelterwood
- Management based on
- Age
II. Un-Even aged system
- Selection
- Management based on
- Size

$>$ After rotation period Even aged forest needs regeneration
$>$ Uneven aged forests: new recruits continuously coming
\checkmark Productivity (Timber) (Quantity) wise even aged is better than uneven aged.

Quality wise uneven aged may be better.

Age (for even aged)

- The age of even aged crop is described by the term "Crop Age"
- Crop Age: Age of regular crop corresponding to its crop diameter
- Method:
a) Get basal area of the crop
b) Get crop dia
c) Plot Age-dia curve
d) Read age corresponding crop dia
- If Age variation in crop is more:-
- Method:
a) Break Area into smaller area of even aged group

b) Get Si , basal area of each plot
c) Get ai, age of each age group (as dealt in Crop Age)
d) \quad Crop Age $=\frac{\Sigma \text { gi ai }}{\Sigma \text { gi }}$

Age (for Un-Even aged)

- Difference of opinion
a. Indian Forest and Forest Products Terminology,

Part I- Forest

- The average age of dominant trees in a crop
b. Europe
- That period which an even aged wood requires to produce the same volume as the un-even aged wood

Determination of Crop Parameters

1. Crop Diameter

2. Crop Height
3. Crop Age
4. Crop Volume

4. Determination of Volume

By means of small sampling units :
Two Methods-
Method 1 : direct measurment of Volume by felling or
measuring volume of each standing tress
$: 1$ (A) \& 1 (B)
Method 2 : indirect estimate using volume table

Method 1

(A)

$$
\mathbf{V}=\frac{\sum^{\frac{\mathbf{n}}{\sum}{ }^{\mathbf{m}}(\mathbf{V i j})}}{\mathbf{n} \cdot \mathbf{a}}
$$

$\sum \mathbf{m i}$: Total no. of trees in $\mathrm{i}^{\text {th }}$ plot \rrbracket
n : Total no of plots.
\# of trees
a : Area of samples plot m^{2}

- Problem 1 : Calculation of volume per hectare
- Solution:-

In an inventory of a stand of Pinus Patula the following data were collected.
$\mathrm{n}=5$
$\mathrm{a}=0.005 \mathrm{ha}$

Trees	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Total
Plots	Volumes $\left(\mathbf{m}^{\mathbf{3}}\right.$ tree)					
$\mathbf{1}$	0.42	0.36	0.39	0.27	-	1.44
$\mathbf{2}$	0.38	0.37	0.41	0.40	0.41	1.97
$\mathbf{3}$	0.29	0.36	0.31	0.34	-	1.30
$\mathbf{4}$	0.41	0.36	0.34	0.33	-	1.44
$\mathbf{5}$	0.30	0.40	0.39	0.27	-	1.36

n m
$\sum \sum \mathrm{v}_{\mathrm{ij}}=7.51 \mathrm{~m}^{3}$
$V=\frac{\sum \sum v_{i j}}{n a} \quad=\frac{7.51}{(5)(0.005)}=300 \mathrm{~m}^{3} \mathrm{ha}^{-1}$

Method 1 (B)

- If sub sampling for volume is practised: 3 methods

1. Mean tree method
2. Mean Form Height method
3. Regression of volume on basal area method

1. "Mean tree method"

Steps:
a) Layout sample plot (SP)
b) count trees in SP
c) Select a sub sample
d) Measure all trees in sub sample for \mathbf{v}, volume
e) Calculate volume of average tree in sub sample
f) Multiply number of trees in sample plot with volume of average tree in sub sample

1. Calculate

$$
\begin{array}{r}
\mathrm{V}_{\mathbf{i}}=\frac{\sum \mathrm{v}}{\mathrm{~S}_{\mathbf{i}}} \quad \begin{array}{l}
\mathrm{m}^{3} \text { per tree } \\
\begin{array}{r}
\left.\mathrm{s}_{\mathrm{i}}: \text { no of trees in sub sample in plot } \mathrm{i}\right)
\end{array} \\
\mathrm{v}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}} \overline{\mathrm{v}}_{\mathrm{i}} \\
\mathrm{~m}^{3} \text { in plot } \mathrm{I},(\mathrm{~m}: \text { no of trees in } \\
\text { sample plot })
\end{array}
\end{array}
$$

vol. per ha, $\mathrm{V}=\sum \mathrm{Vi}$
1 XX a
n : no of Sample Plots

- In an inventory of a stand of Pinus Petula the following data were collected
- $N=5, a=0.01$ ha. $\quad m_{i}=$ Total \# of trees in $i^{\text {th }}$ plot, $s_{i}=$ no of trees in sub sample of plot i

i	m_{i}	s_{i}	$\begin{gathered} \mathbf{v}_{\mathbf{i k}} \\ \mathbf{m}^{3} \end{gathered}$	$\begin{array}{r} \sum \mathbf{v}_{\mathrm{ik}} \\ \mathrm{~m}^{3} \end{array}$	$\begin{aligned} & \mathbf{v}_{\mathbf{i}} \\ & \mathbf{m}^{3} \end{aligned}$	$\begin{aligned} & \mathbf{v}_{\mathrm{i}} \\ & \mathbf{m}^{3} \end{aligned}$
1	10	4	0.14	0.48	0.120	1.2
			0.12			
			0.13			
			0.09			
2	12	4	0.13	0.52	0.130	1.56
			0.12			
			0.14			
			0.13			
3	9	3	0.11	0.43	0.143	1.29
			0.12			
			0.20			
4	11	4	0.10	0.45	0.113	1.24
			0.13			
			0.13			
			0.09			
5	12	2	0.28	0.48	0.240	2.88
			0.20			
Tot=54		17		2.36		8.17

$$
V=\frac{8.17}{(5)(0.01)}=163 \mathrm{~m}^{3} \mathrm{ha}^{-1}
$$

2. "Mean Form Height method"

Steps:
a) Layout sample plot (SP)
b) Measure diameter of each tree in SP
c) Select a sub sample
d) Measure all trees in sub sample for \mathbf{d}, \mathbf{g}, \mathbf{v}, (i.e. dia, basal area, volume)
e) Calculation may be done in 2 ways

1. Calculate $\sum \mathrm{g}, \sum \mathrm{v}$

$$
\sum \mathrm{v}
$$

\Rightarrow mean form height, $\overline{\text { fh }}=$ (for each plot)
$\Sigma \mathrm{g}$

$$
\sum \mathrm{Vi}=\sum(\mathrm{g}) \times \overline{\mathrm{fl}}
$$

$\Sigma \mathrm{Vi}$

vol. per ha, $V=\ldots, n:$ no of Sample Plots
n x a
with a mean form height pooled over all plots d) $\quad \begin{aligned} \overline{\overline{\mathrm{fh}}} & =\frac{\sum \sum \text { Vik }}{\sum \sum \text { gik }} \\ & \uparrow \text { pooled mean }\end{aligned}$
or

$$
\left(\sum \mathrm{gij}\right) \times \mathrm{f} \overline{\overline{\mathrm{~h}}}
$$

$$
\mathrm{V}=
$$

$\mathrm{n} \times \mathrm{a}$

Problem 2: Calculation of volume per hectare

- In an inventory of a stand of Pinus Petula the following data were collected
- $N=5, a=0.01$ ha. $\quad m_{i}=$ Total \# of trees in $i^{\text {th }}$ plot, $s_{i}=$ no of trees in sub sample of plot i

Cont...

i	$\mathrm{m}_{\mathrm{i}} \sum \mathrm{g}_{\mathrm{ij}}$	$\mathrm{fh}_{\mathbf{i}}$	v_{i}
1	0.124	9.80	1.22
2	0.132	9.81	1.29
3	0.119	9.77	1.16
4	0.100	10.23	1.02
5	0.140	10.00	1.40
total: 0.615			6.09
		6.09	
			01)

OR, $\quad n \mathrm{~s}_{\mathrm{i}}$

$$
\mathrm{fh}=\frac{\sum \sum \mathrm{v}_{\mathrm{ik}}}{\frac{\mathrm{n} \mathrm{~s}_{\mathrm{i}}}{\sum \sum g_{\mathrm{ik}}}}=\frac{2.36}{0.238}
$$

using a pooled mean form height of 9.92
(0.615) (9.92)

$$
V=\frac{}{\text { (5) (0.01) }}=122.0 \mathrm{~m}^{3} \mathrm{ha}^{-1}
$$

3. Regression of Volume on Basal Area

 Method:As in previous problem
Steps:
a) Take a Sample and sub samples
b) Measuring of $\mathbf{d}, \mathbf{g}, \mathbf{v}$ on sub sample trees
c) Pool the data
e) Hypothesize linear fit

$$
\begin{array}{ll}
v_{i k}=a+b\left(g_{i k}\right) & m^{3} / \text { tree } \\
m_{i} & \mathrm{~m}^{3} / \text { plot }
\end{array}
$$

Cont....

$\mathrm{m}^{3} /$ ha

n x r

Here- a, b are regression const.
$\mathrm{r}=$ Area of sampling units
$\mathrm{m}_{\mathrm{i}}=$ Total $\#$ of trees in $\mathrm{i}^{\text {th }}$ plot
$\mathrm{n}=$ Total no. of plots.

Regression eq. $Y=a+b . x$

- Problem 2 : Calculate of volume per hectare

- Solution:-
- Using the same data as in the previous examples, the volume on basal area regression is calculated and volume per hectare derived using the regression:

$\mathrm{N}=17$			
$\mathrm{~V}_{\mathrm{ik}}$	g_{ik}	$\left(\mathrm{g}_{\mathrm{ik}}\right)^{2} \cdot 10^{3}$	$\left(\mathrm{v}_{\mathrm{ik}} \mathrm{g}_{\mathrm{ik}}\right) \cdot 10^{2}$
0.14	0.014	0.196	0.196
0.12	0.011	0.121	0.132
0.13	0.014	0.196	0.182
0.09	0.010	0.100	0.090
0.13	0.013	0.169	0.169
0.12	0.012	0.144	0.144
0.14	0.015	0.225	0.210
0.13	0.013	0.169	0.169
0.11	0.010	0.100	0.110
0.12	0.013	0.169	0.156
0.20	0.021	0.441	0.420
0.10	0.009	0.081	0.090
0.13	0.011	0.121	0.143
0.13	0.014	0.196	0.182
0.09	0.010	0.100	0.090
0.28	0.031	0.961	0.868
0.20	0.017	$\underline{0.289}$	0.340
2.36	0.238	3.778	3.691

Cont.....

$$
\begin{array}{cc}
n & n \quad n \\
\sum v g & \frac{\sum v \sum g}{n}
\end{array}
$$

$$
b=\square
$$

$$
\frac{n}{\sum g^{2}-} \frac{\binom{n}{\sum g^{2}}}{n}
$$

$$
=\frac{\left(3.691-\frac{(2.36)(0.238)(10)}{17}\right)}{\left(3.778-\frac{(0.238)^{2}(10)^{3}}{17}\right)}=\frac{(0.38)(10)}{0.446}=8.677
$$

$$
a=v-b g=0.14-8.677 \times 0.014=0.018
$$

$$
\text { V = } 0.018 \text { + (8.677) (g), }
$$

Cont...... result of previous problem :

$$
\begin{aligned}
& \begin{array}{l}
n \quad n \\
\sum v_{i}= \\
\sum m_{i} \\
a+b\binom{n m}{\sum \Sigma g_{i j}} .
\end{array} \\
& =54(0.018)+(8.677)(0.615)=6.308, \quad m^{3} \text { in } 0.05 \text { ha } \\
& V=6.308 /((5)(0.01))=126, \quad m^{3} h^{-1}
\end{aligned}
$$

Method 2 : with the help of volume tables

Steps:
a) Take a sample
b) Make a frequency table
s.n. dia classes \# of trees

c) Read volume corresponding to mid point of dia class
d) Multiply volume by \# of trees and sum to arrive at volume of the sample plot.
e) Get an estimate of volume of whole forest.

