Estimation of Growth and Yield of Stands

Scope of Forest Biometry...

1. Volume of forest crops at present
$+$
2. Forecast of future yields

1. Volume of forest crops at present

- Not always possible to calculate for whole forest

Sample plots (Area + Point sampling)

For obtaining forest inventory

2. Forecast of future yields...

Require tables which may give Yield of Stand on unit area basis
depends mainly on

1. Stand structure
2. Stand growth
3. Stand density
4. Productive capacity of site, "site quality"

1. Stand structure

Definition :

- Distribution and representation of age and / or size classes of trees in a stand

Keeps changing

1. Factors of locality
2. Management practices

Stand structure...

- Classified in 2 groups :

1. Even aged
2. Un-even aged

Even aged Stand

\checkmark Trees approximately of same age
\checkmark Age variation less than 25% rotation age

Un-even aged stand

\checkmark Individual stem vary widely in age
\checkmark Age variation is more than 25% of rotation age

Uneven-aged: a stand with trees of three or more distinct age classes, either intimately mixed or in small groups.

Two-aged: a stand with trees of two distinct age classes separated in age by more than plus or minus 20% of the rotation age.

Even-aged: a stand composed of a single age class of trees in which the range of tree ages is usually plus or minus 20% of the rotation age.

Even aged and Un-Even aged forest

Even aged forest :

- Has stands of different ages to maturity but one stand has trees of one age

Un Even aged forest:

- Each stand has trees of all ages -Selection Forest

Silvicultural system

- Broadly classified in to 2 main groups :
I. Even aged system
- Clear cutting
- Shelterwood
- Management based on Age \& Area
II. Un-Even aged system
- Selection
- Management based on Size

\checkmark Mathematically

Even aged Stand
Normal distribution

- Peaking at mean BH size

Un-Even aged Stand
Inverse J curve

FIGURE 1G-2
A typical duh distibution for parc, ovon-agod stands. :

A typical dbh distribution for pure, even-aged stands

Typical dbh distribution for regular, uneven-aged stands

1. Dia Distribution Curve is different

Even aged Stand

Uneven aged Stand

Uneven aged stand

De Liocourt diameter distribution:

- Stem numbers in successive diameter classes had a fixed ratio within a stand

$$
\frac{\mathrm{N} 1}{\mathrm{~N} 2}=\frac{\mathrm{N} 2}{\mathrm{~N} 3}=\frac{\mathrm{N} 3}{\mathrm{~N} 4}=\mathrm{q}(\text { Di Liocourt quotient })
$$

Where, N1, N2, N3 etc. are \# of stems in successive dia class.

- Geometric series

Even aged \& Un-Even aged Forest structure

- Reverse J shaped curve
- Even aged Forest
- Curve applies to the whole forest
- Un-Even aged Forest
- Curve applies to each small unit of area throughout the forest

Even Aged Stand (of one species) are

 Characterized by:1. \# of Stems /ha
2. Basal Area
3. Crop dia
4. Height
5. Age
6. Form
7. Crown size and Canopy

Un-even Aged Stands are Characterized

 by:1. Diameter and \# of stem distribution

Number of Stems per ha:

- A useful description
- Alone it is not sufficient
(Along with ht, Age or dia it gives picture of
crop)

Example:

Young crop
\#200/ha may be quite open or light stocked

Mature crop
\# 200/ha near rotation age may be densely stocked
$>$ Plantation usually done at $2.5 \times 2.5 \mathrm{~m}$ or $3.3 \times 3.3 \mathrm{~m}$
$\Longrightarrow 1600$ or 1000 plants /ha
\checkmark at Maturity
200-500 trees /ha

- In natural forests

- Even in even aged well managed forest
- \# decrease due to
- Natural Mortality
- Thinning

Estimate \# of Trees/ha:-

Method 1:

- Lay out small plot of known area, a
- Count the \# of trees in each plot, n
- Calculate

No of trees per Ha,
$N=n / a$

Method 2:

a) At representative points measure the length Li

$1^{\prime}=$ closet neighbour
$2^{\prime}=$ second closet neighbour
b) No of trees per Ha,

$$
\mathbf{N i}=\mathbf{A} / \mathbf{a}_{\mathbf{i}}
$$

where,

$$
\begin{aligned}
& \mathbf{A}=1 \text { ha }=10,000 \mathrm{~m}^{2}=\mathbf{1 0}^{4} \mathrm{~m}^{2} \\
& \mathbf{a}_{\mathbf{i}}=\text { area of circle with 'Li' as diameter } \\
& \text { i.e. } \mathbf{a}_{\mathbf{i}}=\Pi \times(\mathrm{Li} / 2)^{2} \\
&=\frac{\Pi \times \mathrm{Li}^{2}}{4} \\
& \mathbf{N i}=\mathbf{A} / \mathbf{a}_{\mathbf{i}}=\left[(\mathbf{4} / \Pi) * \mathbf{1 0}^{\mathbf{4}}\right]^{*}\{\mathbf{1}]
\end{aligned}
$$

$\mathbf{L i}{ }^{\mathbf{2}}$
c) This is for one sample point if we take sample at ' m ' points, then

$$
\begin{aligned}
\mathbf{N} & =\frac{\sum \mathbf{N i}}{\mathbf{m}} \\
\mathrm{N} & =\left[(4 / \pi) * 10^{4}\right] * \frac{\sum\left(1 / \mathrm{Li}^{2}\right)}{\mathrm{m}} \\
& =\mathbf{K} * \frac{\sum\left(\mathbf{1} / \mathbf{L i}^{\mathbf{2}}\right)}{\mathbf{m}}
\end{aligned}
$$

Method 3 :

-Extension of method 2.
m
$N=\frac{\left[(\mathbf{n}-1 / 2) * 10^{4}\right]}{\pi} * \frac{\sum\left(1 / \mathbf{k i}^{2}\right)}{m}$

$1,2,3,4=$ nearest, $2^{\text {nd }}, 3^{\text {rd }} \& 4^{\text {th }}$ nearest neighbour
$\mathrm{n}=\mathrm{n}^{\text {th }}$ nearest neighbouring tree.
$k i=$ distance from the sampling point to the $\mathrm{n}^{\text {th }}$ nearest tree.
$\mathrm{m}=\#$ of sampling points.

Example of number of trees /ha Calculation

-Problem 1:

At 10 points in a plantation chosen systematically, the following data were collected on the number of trees $-n$ - in circular plots of area 0.01 ha. Calculate number of trees per Ha.

Data: $n=16,14,18,13,12,9,17,15,16,14$

- Solution:-

10

$$
\sum n i=144 \quad n=14.4
$$

$\mathrm{N}=\mathrm{n} / \mathrm{a}$
$=14.4 / 0.01$
$=1440$ stems ha ${ }^{-1}$

- Problem 2:

In a similar plantation and at a similar ten points chosen systematically, the distance-L,between the nearest two trees ($n=1$) was measured and recorded in m .

Data: $\mathrm{Li}=2.25,3.75,1.95,3.65,2.75,2.90$, 3.10, 3.45, 3.60, 2.85 .

- Solution:-

$$
\Sigma\left(1 / \mathrm{Li}^{2}\right)=1.246
$$

(1.273) 10^{4}
$N=\frac{}{10}$ (1.246)
$=1586$ stems ha ${ }^{-1}$
Where $\mathrm{n}=1$

- Problem 3:

In a similar manner but in another older plantation the distance from the sampling to the $4^{\text {th }}$ nearest tree ($n=4$) was measured and recorded to the nearest 0.1 m .

Data: 4.8, 6.2, 5.4, 6.1, 5.7, 6.0, 5.8, 5.6, 6.2, 6.0

- Solution:-

10
$\sum\left(1 / \mathrm{Ki}^{2}\right)=0.3045$
(3.5) 10^{4}
$N=-(0.3045)$
10 (3.14)
$=339$ stems ha $^{-1}$

2. Forecast of future yields...

1. Stand structure
2. Stand growth

3. Stand density
4. Productive capacity of site, "site quality"

3. Stand density or Crop density

- Measure of relative completeness of tree stocking
- Expressed as a decimal coefficient
- Taking Normal no. of trees, basal area or volume as unity
$>$ Overstocked
$>$ Full stocked
$>$ understocked

Normal Forest

"Ideal state of perfection"

Complete , ideal stocking of all stands

- satisfy the purpose of management to the full

Basic factors of Normality

General attributes :

1. Species grown \& methods of silviculture adopted must fully suit all peculiarities of site
2. Growing stock of trees must be so constituted that it provides regularly the greatest possible quantity
3. General organization of forest must be appropriate for its purpose

- Road network, extraction method, sales organization

4. General administration must be the best possible

Historical background of the Normal forest

- Late $18^{\text {th }}$ and earlier $19^{\text {th }}$ century, when the principal of sustained yield took root

'Forest should be capable of continuous, regular yields'

Even aged stands \& Even aged forestry - Essence of good forestry

2 main types of Normal Forest

1. Normal Even aged forest
2. Normal Un-Even aged forest

1. Normal Even aged forest

3 Norms :

1. Normal series of age gradation

- Presence of as many uniform aged stands as there are years in the rotation
- Ages of stand differs by one year up to rotation age
- Each yield capacity is equal

2. Normal growing stock

- Fully \& ideally stocked
- Normal volume for each age

Stocking and volume deemed to be ideal to achieve objects
of management
3. Normal increment

- Growing at a rate consistent with normal age and normal stocking

All 3 norms must be present for the forest to be
normal as a whole

Trinity of norms

1. Normal series of age gradation
2. Normal growing stock
3. Normal increment

First depends on organization of final felling.
Second \& third depend on silviculture tending.

Actual stand vol.
Stand density (SD) =
Normal stand vol.

Over stocked, $\quad S D>1$
Under stocked, \quad SD <1
Normal stocking, \quad SD $=1$

Growth Prediction for Normal Even Aged Stand using Yield Tables

$$
l v=p\left(Y_{f}-Y_{p}\right)
$$

Iv: Volume growth /ha Actual stand vol.
p:
Normal stand vol.
$\mathbf{Y}_{\mathrm{f}}=$ future vol/ha from yield table
$\mathbf{Y}_{\mathrm{p}}=$ present vol/ha from Yield table
$>$ Example: Year Age Vol.(according to YT)

1980	70	11,900
1990	80	13,360

In 1980 inventory data showed avg. vol. of stand 7" dia and over to be $8920 \mathrm{ft}^{3}$. Stocking in 1980 ? 8920
\Longrightarrow stocking in $1980=\quad=75 \%$
11900

Cont...

1. Assuming constant stocking for next 10 yrs :

$$
\begin{aligned}
\mathrm{Iv} & =(13,360-11,900) \times 0.75 \\
& =1095 \mathrm{ft}^{3}
\end{aligned}
$$

2. Suppose 4% increase in stocking in next 10 years: ' \mathbf{p} ' in year $1990=0.79$

$$
\begin{aligned}
\text { IV } & =(13,360) \times 0.79-(11,900) \times 0.75 \\
& =1629 \mathrm{ft}^{3}
\end{aligned}
$$

2. Normal Un-Even aged forest

- Un-Even aged forest
- Trees of all ages(\& sizes) are intermingled on every small unit of area
- Age \& rotation - meaningless
- Normality is judged by
- No. of trees in each size class
- Must have normal series of size gradation instead of age gradation

3 Norms:

1. Normal growing stock
2. Normal increment
3. Normal series of size gradation

Normal Un-Even aged forest

- Difficult to devise a simple model to :
- represent either the no. or volumes of trees in several size classes
- No Yield tables
- Normal growing stock - which produces permanently the most valuable increment
- Ideal state can only be found by long experience of working - Method of control inventory

$\mathbf{3}$ ways to know Normality in un-even aged forest :

1. Inverse J curve (N-D curve)

- Normal Un-Even aged forest
- Normal Even aged forest
$>$ Derive inverse J curve for un-even aged forest
from yield table for even aged forest
$>$ Get Coefficient of diminution

SIZE- FREQUENCIES AND COEFFICIENT OF DIMINUTION ON 1 HA

Dia. Class	No of Stems	Coefficient of diminution
$0-10$	185	1.54
$10-20$	120	1.41
$20-30$	85	1.36
$30-40$	62	1.25
$40-50$	50	1.25
$50-60$	40	1.22
>60	34	1.15

2. De Liocourt diameter distribution:

- Stem numbers in successive diameter classes had a fixed ratio within a stand

N1 N2 N3
$\square=-\quad=-\quad=-\quad$ (Di Liocourt quotient)
N2 N3 N4
Where, N1, N2, N3 etc. are \# of stems in successive dia class.
Or, Geometric series
$N_{1}, N_{1} . q^{-1} 1, N_{1} \cdot q^{-2}, N_{1} \cdot q^{-3} \ldots$.

Problems:

- Parameters not known

1. $\quad N_{1}=$?
2. $\mathrm{q}=$?

- Normal stem number distribution varies with site quality

3. Meyer's exponential expression

- Simplified De Liocourt's law
- Used exponential form :

$$
y=K e^{-a x}
$$

Where,
$Y=$ no. of stems in dia interval
$x=$ mid of dia class
' K ' and ' a ' are constants vary with site $\&$ species

Canopy density

- Measure of relative completeness of canopy
- Expressed as decimal coefficient (closed canopy as 1)
- No bearing with crop volume, basal area or no. of trees
- Important for forests which do not have yield tables
- Gives indication of stand density

Classification of canopy density

i. Closed
ii. Very Dense
iii. Moderately dense
iv. Open

- density 1
- density between 0.7 and 1
- density between 0.4 and 0.7
- density between 0.1 and 0.4

Calculation of canopy density for

Pure Even Aged Crops :

Assumption:
Canopy as - non overlapping circles of same size
2 methods:

1. For square spacing
2. For triangular spacing

1. For Square Spacing

Maximum canopy closer is

2. For triangular spacing

Maximum canopy closer is

Cont.....

$1 \pi 2$
= - - x100\%
$2 \quad 2 \quad \sqrt{3}$
$=\frac{\pi}{2} \times 100 \%=0.9068 \times 100 \%$ $2 \sqrt{3}$
= 90\%

- Triangular spacing really happens as trees will bend their way for maximum light.

Measurement of canopy density in field

- Instrument - Spherical Densiometer

Properties:

- Spherical surface
- 24 square blocks

- Each square block has 4 equi spaced dots
- Total dots = 24 * 4 = 96

Procedure

1. Open the densiometer
2. Hold it about 12 " in front of you and at elbow height
3. Identify a rock in the channel directly below the densiometer

- Throughout this entire procedure, the densiometer should remain above this rock

4. The top of your forehead should be visible in the mirror but not the grid area
5. Close one eye and get your sighting eye in line with the grid centerline
6. Make sure the densiometer is level by getting the bubble inside of the circle
7. You will have a view of canopy cover
8. Maintain this position while you count

Calculation

1. There are four dots in each square of the grid
2. Count either the dots that are more than half shaded or less than half shaded, depending on which is easier to count.
3. Count systematically, from top row to bottom row, left to right.
4. Record the number of shaded dots on your data sheet
5. If you counted unshaded dots, subtract that number from 96 to get shaded dots.

6. Multiply the count by 1.04
7. This is the percentage of area covered by

canopy

Estimating maximum basal area per

hectare for known spacing and K / d

ratio.

Where:
N - number of stems per hectare at full stocking K - crown diameter, m
d - stem diameter, m

$$
z=\frac{K}{d} \text {, the crown/bole diameter ratio }
$$

The maximum number of stems per hectare N , assuming square spacing, for trees of a given diameter is given by:

Q: For a crown/bole diameter ratio of 10, crown diameter and bole diameter in m , the maximum feasible basal area per hectare, $\mathrm{G}_{\max }$, with square spacing is :

$$
\mathrm{G}_{\max }=\frac{(0.7854)^{*} 10^{4}}{10^{2}}=78.5 \mathrm{~m}^{2} \mathrm{ha}^{-1}
$$

or, for a K/d ratio of 15 of square spacing;
(0.7854) 10^{4}

$$
\mathrm{G}_{\max }=\frac{15^{2}}{}=34.9 \mathrm{~m}^{2} \mathrm{ha}^{-1}
$$

2. Forecast of future yields...

1. Stand structure
2. Stand growth
3. Stand density

4. Productive capacity of site, "site quality"

Forest Site Quality Determination

Forest Site

- An area
- considered in terms of its environment - determine the type and quality of the vegetation it can carry
- Affected by the Factors like
- Rock
- Soil
- Climate
- Topography
- Vegetation

Site Quality

- Forest site quality - "Relative Productive Capacity"
- Site productivity :
- Site quality + management inputs
- Management inputs like
- Growing stock manipulation
- Site treatment
- Fertilizer/irrigation inputs
- Soil compaction (grazing)
- Biomass and nutrient cycling

Measurement of Site quality

- Using Multiple variables
- Forest productivity depends on various parameters
- Attempts are made to quantify forest productivity in terms of these parameters.
-2 methods

1. CVP Index
2. Using vegetative characteristics

Measurement of Site quality

1. CVP (climate, vegetative \& productivity) Index

- Tries to quantify Climatic, edaphic and biotic factors
- Given by Paterson - Weck

CVP Index

$$
\begin{equation*}
I=\left[\frac{T_{v}}{T_{a}}\right](P)\left[\frac{G}{12}\right] \tag{E}
\end{equation*}
$$

I = CVP Index. Varies from 0 - 30,000. Forest growth possible in I > 25
$\mathrm{T}_{\mathrm{v}}=$ Mean monthly temp. of the hottest month in ${ }^{\circ} \mathrm{C}$
$\mathrm{Ta}=$ Difference between the mean monthly temp ${ }^{\circ} \mathrm{c}$ of the hottest and coldest month
$\mathrm{P}=$ mean annual precipitation in mm
G = Length of growing season in Months
$\mathrm{E}=$ Evapo-transpiration defined as $=\mathrm{Rp} / \mathrm{Rs}$

$$
\begin{aligned}
& \mathrm{Rp}=\text { Radiation at pole, } 10^{3} \mathrm{~g} \text { cal } \mathrm{cm}^{-2} \mathrm{~min}^{-1} \\
& \mathrm{Rs}=\text { Radiation at site, } 10^{3} \mathrm{~g} \text { cal } \mathrm{cm}^{-2} \mathrm{~min}^{-1}
\end{aligned}
$$

- Potential Productivity $\mathrm{Y}=5.2 \log \mathrm{I}-7.25$
- Y has units $\mathrm{m}^{3} /$ ha/year
- For Dehradun

$$
\begin{aligned}
& -I=(28.4 / 15.6)(2160)(6 / 12)(47 / 100)=924.09 \\
& -Y=5.2 \log 924.09-7.25=8.17 \mathrm{~m}^{3} / \text { ha/year }
\end{aligned}
$$

- Short comings
- Too broad based
- Soil conditions, aspects, topography, slopes not considered
- Biotic factors not considered
- Applicable only over very large forest areas

Measurement of Site quality

2. Using vegetative characteristics
i. Plant indicators
ii. Trees characteristics

- BA, Volume, Height etc.
i. Plant indicators
- Match species to different sites
- Casia tora indicator of degraded forest
- Applicable to simple compositions of forest
- Requires considerable knowledge of ecology
ii. Trees characteristics
- Important characteristics of tree which reflect productivity:
- Vol., Dia or BA, Height,
- Volume best indicator but -
- when to know volume?

Yield class system of classifying growth potential

MAI \& CAI curve intersection

Maximum average rate of volume increment(MAI) which a
particular species can achieve on a particular site

Current and mean annual increments; single trees

- Yield Class : based on maximum MAI
- 'Yield class 12' means it has maximum MAI of $12 \mathrm{~m}^{3}$ / ha
- But for preparing yield class for a site , one has to wait for the period till the crop reaches its maximum MAI

Other tree characteristics...

Diameter or basal area

- Reflects the effects of site quality
- Affected by stand density

Height

- Reflects the effects of site quality
- Least affected by stand density
- Relationship of tree ht and age - used in most countries as a measure of site quality
$>$ In America - relationship between tree ht and age is called " site index"

Avg ht that a dominant and codominant trees will attain at key

$$
\text { ages, such as } 50 \text { or } 100 \text { years }
$$

Ex : site index 70 on a 50 yr basis means ?

In India....

- Before 1930,
- Average ht of all trees used
- Since 1930,
- Site quality assessed based on top ht
- Top hts of all sample plots - plotted against age
- Then site classes are delimited by following methods :

1. Baur's method
2. British Forestry Commission(BFC) method

Measurement of Site quality

1. Strip - Height Method (Baur's Method)

- Steps

1. Identify various plots
2. Plot volume/ha Vs age curve for each of the plot on a

single paper
Volume/ha

Contd.

3. Two limiting curves are drawn
4. Space between the two limiting curves is divided into strips of equal width
5. These strips represent different site quality classes

- In India - Volume is replaced by Height

Baur's method with height

- Steps

1. Identify various plots
2. Draw 'top height Vs age' curve for each of the plots

Age

Contd.

3. After neglecting the abnormal points limiting curves are plotted through the guiding points
4. No. of qualities to be differentiated are decided by considering:-
$\checkmark \quad$ Difference between the limiting curves
$\checkmark \quad$ Practical limits of accuracy in ht determination
5. Space between limiting curves divided symmetrically
6. For sal Four quality classes: divided by three curves
7. For teak five quality classes : divided by four curves

2. British Forestry Commission method

- Here also height taken as index
- Site trees
- Dominant or co-dominant
- Even aged
- No evidence of crown damage, disease, crook, or forking etc.
- Measurement taken of site trees only
- Data on height development obtained from both temporary and permanent sample plots

Contd.

Steps

1. Index age fixed (25,50 or 100 years) fixed on the basis of estimation of age of site*
2. From each plot over index age three stems of approx. mean heights are selected.
3. Selected trees are subjected to stem analysis; age Vs ht curve from stem analysis prepared for each plot on a single paper.
4. Heights at index age are observed. And divided into 10 feet divisions representing Quality classes.

5. In this way number and range of quality classes is determined
6. All the plots over the age of index age are then allotted to a site quality.

Fractional site qualities

- Quality classes has high range of heights
- Lower limiting curve of a quality class is signified by 0.0 , the mean curve as 1.0 and the upper curve as 2.0
- If age and top height are known fractional site qualities can be calculated

Fig. 11\% Age-top height curves for plantation teak

Example of fractional site quality

- At 60 years and top height $=75 \mathrm{ft}$
- Site Quality = 1.0 III
- At 60 years and top height $=65 \mathrm{ft}$
- Site Quality = 0.0 III
- At 60 years and top height $=69 \mathrm{ft}$
- Site Quality = 0.4 III
- At 60 years and top height $=80 \mathrm{ft}$
- Site Quality = 1.5 III

Estimating the site quality of a Compartment

Method 1 (by Top Height) :

- Steps
- Get Crop age
- Get top height
- Use yield tables to find out the site quality

Age - Difficult to know ?

Estimating the site quality of a Compartment

Method 2 (By Sample Plots):

- Steps
- Lay a Representative Sample plot
- Get data for plotting ht vs dia curve
- If data for all dia class is not available go out side the sample plot to get the data
- Plot ht vs dia curves for various site qualities
- Overlay the field data curve with the site quality curves (yield table) to see the site quality

2. Forecast of future yields...

1. Stand structure

2. Stand growth
3. Stand density
4. Productive capacity of site, "site quality"

2. Stand Growth

- Development of tree crops as they increase in age
'Design of growth model' depends on :
- Resource available
- Uses to which it will be put
- Structure of tree crops

Even or Uneven aged

- Changes from year to year
- Even aged stand
- Simplest models
- Un Even aged or mixed species stand
- Very complex

A classification of growth models

Stand prediction

 in
Un-Even aged or mixed species stand

$>$ Factors affecting stand structure

- Growth
- Death
- Cutting of trees

- Definitions:

$>$ Ingrowth:

\square volume of new trees growing into the minimum measurable size class during the measurement period.

> Mortality:

[. the \# or vol. of trees periodically dying from natural causes as:

- Old age, Disease, Insects etc.

$>$ Cut:

- the \# or vol. of trees periodically felled or salvaged

Cont..

- Types of Stand Growth (in terms of vol.)

$$
G g=V_{2}+M+C-I-V_{1}
$$

$\mathrm{Gg}=$ Gross growth of initial vol.
$\mathrm{V}_{2}=$ Stand Vol. at end of growth period
$\mathrm{V}_{1}=$ Stand Vol. at beginning of growth period
$\mathrm{M}=$ Mortality Volume
$C=$ Cut volume
I = Ingrowth Vol.
$G n=$ Net growth of initial volume

$$
\longrightarrow \quad G n=(G g-M)=V_{2}+C-I-V_{1}
$$

$\mathrm{G}_{\mathrm{d}}=$ Net increase in standing vol.

$$
G_{d}=V_{2}-V_{1}
$$

Stand prediction in Un-Even aged crops

- Method of measuring growth of un-even aged crops
- evolved from those developed in France \& Switzerland in last century
- Swiss forester , M Henri Biolley introduced " Methode du Controle"
- Established the increment of forest over successive 100% inventories by 3 categories
- Large , Medium \& small sized trees
- This data then used to predict or plan future felling

Method of control...

- Depends on the following factors:

1. 100% inventories
2. Well defined procedure of measuring and re-measuring the diameter of standing trees
3. Measuring and determining the volume of felled trees and mortality trees
4. A simple method of determining ingrowth
5. Use of permanent local volume tables

- Initial inventory
- Entire area is enumerated
- Trees are classified by Dia- class
- Record all trees removed till the next inventory (dia class as well as volume)
- Next Inventory
- Entire area is again enumerated
- Volume calculation
- Using LVT
- For each dia -class
- Add volume of each dia class to obtain volume of each inventory
- Cut and mortality together constitute trees
removed
a) Vol at time $t \quad=V_{1}$
b) Vol at time $(t+5)$ yrs $=V_{2}$
c) Account total vol. removed during the period $=C$

Then, net growth, including ingrowth, of initial volume

$$
G n+i=V_{2}+C-V_{1}
$$

The Calculation of increment in the Methode du Controle

Dbh (1)	Vol./tree	2001		2006		Felled		Recruits		Revised 2006 total		Volume inc./ha in 5 yr (13)	Annual volume increment per ha	
			Vol./ha											
	(2)	No./ha (3)	(4)	No./ha (5)	(6)	No./ha (7)	(8)	No./ha (9)	(10)	No./ha (11)	(12)		(14)	$\begin{gathered} \% \\ (15) \end{gathered}$
75	5.56	-	-	1	5.56	-	-			1	5.56		Lar	trees
70	4.93	1	4.93	-	-	-	-			-				
65	4.32	-	-	-	-	-	-			-				
60	3.72	2	7.44	5	18.60	-	-			5	18.60			
55	3.20	5	16.00	6	19.20	2	6.40			2	6.40			
Total large trees		8	28.37	12	43.36	2	6.40	6	19.20	$8{ }^{\circ}$	30.56	2.19	0.44	1.6
									Recruits	6	19.20		Mediu	trees
50	2.70	11	29.70	7	18.90	1	2.70			8	21.60			
45	2.22	13	28.86	17	37.74	5	11.10			22	48.84			
40	1.66	27	44.82	27	44.82	1	1.66			28	46.48			
35	1.14	32	36.48	41	46.74	4	4.56			19	21.66			
Total medium trees		83	139.86	92	148.20	11	20.02	26	29.64	83^{*}	157.78	17.92	3.58	2.6
									Recruits	26	29.64		Sma	trees
30	0.12	66	47.52	52	37.44	5	3.60			57	41.04			
25	0.37	69	25.53	83	30.71	13	4.81			96	35.52			
20	0.16	117	18.72	94	15.04	19	3.04			73	11.68			
Total small trees		252	91.77	229	83.19	37	11.45	40	6.4	252	117.88	26.11	5.22	5.7
Total		343	260.00	333	273.75	50	37.87			343	306.22	46.22	9.24	3.6

Methode du Controle (volume increment by dia class)

1. the classes of diameter at breast height were grouped into three major categories of large, medium and small trees. A separate increment \% was calculated for each.
2. data derived from a one parameter volume table.
3. from an inventory of the compartment made in 2001
4. col. $2 \times$ col. 3
5. From an inventory of the compartment made in 2006

Contd...

6. col. $2 \times$ col. 5
7. From the compartment records of outturn for the period 20012006
8. col. $2 \times$ col. 7
9. only to be completed in the line of the totals for the large and medium trees $=$ total of col. $5+$ total of col. $7-$ total of col. 3, i.e.
$V_{2}+F-V_{1}$ or the number of trees of medium size in 2001 recruited to the large tree category, etc.
10. col. 2 X col. 9 for totals only.

Contd.

11. has to be completed for the total line of the large trees first and must equal the corresponding total in col. 3.

- Then starting with the largest diameter class of the large trees, col. 11 $=$ col. $5+$ col. 7 until the sum of these totals equals the figure previously entered in the total line. The balance of trees in the large tree diameter classes has been recruited from the medium category and this balance is entered in the blank line at the head of the medium tree category in col. 11 and labelled 'recruits' in the adjoining space in col. 10

12. col. $2 \times$ col. 11
13. completed for the total line of the large, medium and small tree category only = col. 12 - col. 4
14. col. 13 divided by the period of years between the inventories
15. column 14 expressed as a \% of col. 4

- Meyer (1953) reviewed the Stand Prediction

Method

- Developed new system was similar to Methode du Controle but
- Predicted the future structure of a stand either from increment measured from successive inventories or in sample plots

Methodology

1. Current diameter increment by diameter classes

- Use of data collected

2. Predict future structure of stand and growth in volume

1. Diameter increment by diameter classes

- Takes in to account
- no. of trees rising into a diameter class,
- Trees remiaining stationery in the class
- Trees going out of the class
in successive inventories
- Increment in each dia class,

$$
I=(D R / D E) * C
$$

where,
$D R=$ double rising (sum of trees rising out
and rising into a class)
$D E=$ double effective (sum of trees in the
first and second inventories
after correction for trees removed)
$C=$ width of dia class

Calculation of Periodic Annual Diameter Increment by Diameter Classes by the Method of Control

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	Inventory Spring 1999 (number)	Trees Removed (number)	Inventory Spring 1999 Minus Trees Removed (number)	Inventorv Spring 2009 (number)	Trees Rising (number)	$\begin{gathered} \text { Double } \\ \text { Rising } \\ \text { (number) } \end{gathered}$	Double Effective (number)	DR/DE	Periodic Diameter Increment (inches)	Periodic Annual Diameter Increment (inches)
32	0		0	1	0	1	1	1.000	2.00	0.200
30	2		2	4	3	4	6	0.667	1.33	0.133
28	3		3	0	0	3	3	1.000	2.00	0.200
26	3	2	1	9	8	8	10	0.800	1.60	0.160
24	10	1	9	7	6	14	16	0.875	1.75	0.175
22	10	4	6	21		27	27	1.000	2.00	0.200
20	23	4	19	39	41	62	58	1.069	2.14	0.214
18	37	7	30	72	83	124	102	1.216	2.43	0.243
16	73	5	68	169	184	267	237	1.127	2.25	0.225
14	194	17	177	234		425	411	1.034	2.07	0.207
12	249	9	240	379	241	621	619	1.003	2.01	0.201
10	418	15	403	507		864	910	0.949	1.90	0.190
Total	1022	64	958	1442		2420	2400			
							$\frac{\Sigma D R}{\Sigma D E}$	1.008		

Average $\quad=2.02 \quad 0.202$

Number of trees ingrowth $=1442-958=484$ (checks with last figure in Column 6). Trees were removed (Column 3) immediately following t 1999 inventory. Data from 143 permanent sample plots of $\frac{1}{5}$ acre located on Morgan-Monroe State Forest, Indiana. Sample area: 28.6 acres. Growth period: iu years.

- No. of trees rising in to class =

(\# of trees in $2^{\text {nd }} \operatorname{Inv}$)

- (\# of trees in 1st Inv)
+ (\# of trees rising out of the class)

$$
\begin{aligned}
& C 6_{i+1}=C 5 i-C 4 i+C 6_{i-1} \\
& C 7 i=C 6_{i+1}+C 6_{i-1} \\
& C 8 i=C 4 i+C 5 i
\end{aligned}
$$

2. Predict future structure of stand and growth in volume

STAND PREDICTION METHOD

$\begin{aligned} & \text { Dbh } \\ & \mathrm{Cm} \end{aligned}$	$\begin{gathered} \text { Vol. } \\ \text { per } \\ \text { tree } \\ \text { (Cum) } \end{gathered}$	Inventory - No. of Stems Per Ha	Diameter increment in 5 years Cm (i)	Ratio i/c*	Station ary	1dia. Class	2 dia. Class	Future stand No. of stems per Ha	Present Volume (Cum per ha)	Volume prediction (Cum per ha)
1	2	3	4	5	6	7	8	9	10	11
42	1.80	-	-					1.10	-	1.98
40	1.58	2	1.1	0.55	0.90	1.10	-	2.70	3.16	4.27
38	1.38	3	1.2	0.60	1.20	1.80	-	5.45	4.14	7.52
36	1.19	5	1.7	0.85	0.75	4.25	-	10.55	5.95	12.55
34	1.02	8	2.0	1.00	-	8.00		8.50	8.16	8.67
32	0.88	9	2.4	1.20	-	7.20	1.80	11.70	7.92	10.30
30	0.76	13	2.2	1.10	-	11.70	1.30	17.10	9.88	13.00
28	0.65	18	1.9	0.95	0.90	17.10	-	13.70	11.70	$\begin{gathered} 8.90 \\ 130 \end{gathered}$

$\begin{aligned} & \text { Dbh } \\ & \mathrm{Cm} \end{aligned}$	Vol. per tree (Cum)	Inventory - No. of Stems Per Ha	Diameter increment in 5 years Cm (i)	Ratio i/c*	Statio nary	1dia. Class	2 dia. Class	Future stand No. of stems per Ha	Present Volume (Cum per ha)	Volume prediction (Cum per ha)
1	2	3	4	5	6	7	8	9	10	11
26	0.55	16	1.6	0.80	3.20	12.80	-	22.80	8.80	12.54
24	0.46	28	1.4	0.70	8.40	19.60	-	28.90	12.88	13.29
22	0.38	41	1.0	0.50	20.50	20.50		58.20	15.58	22.12
20	0.31	58	1.3	0.65	20.30	37.70		70.90	17.98	21.98
18	0.25	92	1.1	0.55	41.40	50.60		99.45	23.00	24.86
16	0.18	129	0.9	0.45	70.95	58.05		70.95	23.22	12.77
	Total	422						422.00	152.37	174.75

$$
\mathrm{c}=\text { class interval }=2 \mathrm{~cm}
$$

5 years' total increment $=(174.75-152.37)=22.38$;
current annual increment 4.48 per year or 2.9%

Notes on calculation in Example of the

STAND PREDICTION METHOD

COLUMN

1 Classes of diameter at breast height
2 From a one parameter volume table
3 From an inventory
4 From repeated measurements on sample trees
5 Col. 4 divided by the diameter class interval
$6,7,8$ If the increment is $1 / \mathrm{n}$ of the class interval, then on average $1 / n$ of the trees will move out of the class in to the next larger dia class;

However, if the increment is more than the class interval, then all the trees will move up

If the increment is $1 \frac{1}{4}$ times the class interval, all the trees will move up and
$1 / 4$ will move beyond into the next but one diameter class

Contd.

Co.6=0, if Col. 5 is greater than 1, or else $=(1-$ col. 5$)($ Col. 3$)$
Col. $7=$ Col. $3-($ col. $6+$ col. 8)
Col. $8=0$, if col. 5 is less than 1 , or else $=($ col. $5-1)($ col. 3$)$
Column 9 Col6 + (the entry in Col. 8 of 2 diameter classes lower) + (the entry in col.7of 1 diameter class lower), e.g.

Dbh 42 col. $9=0+1.10=1.10$
Dbh 40 col. $9=0.90+1.80=2.70$
10 col. 2 X col. 3
11 col. 2 X col. 9
> The total of column 3 must equal that of column 8 .

Q: Following inventory data has been collected in two different years in the same forest area:

Dia class (in cm)	Volume per tree	Initial inventory in 2001 (number)	Second inventory in 2011 (number)
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
42	1.8	0	1
40	1.58	2	3
38	1.38	4	5
36	1.19	6	11
34	1.02	12	20
32	0.88	18	26
30	0.76	22	30
28	0.65	26	33
Total		90	$\mathbf{1 2 9}$

Calculate annual diameter increment in each dia class, overall annual diameter increment and also future volume in year 2016 using Method of Control. ${ }_{135}$

