### 1. Volume of forest crops at present

### **Forest Inventory**

# **Definition**

- F. I. is :
  - Tabulated , reliable and satisfactory tree information, related to the required unit of assessment
  - An attempt to describe quantity, quality, diameter
     distribution of trees and many of the
     characteristics of land upon which trees are
     growing

## **Objective**

- Natural Resources Survey
- Management plan for a forest long term and short term
- Assessment of potential for forest and wood based industry development

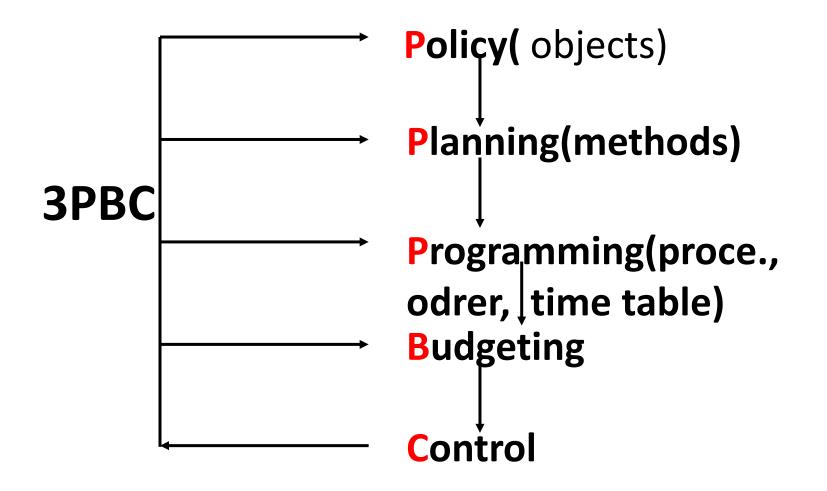
## **Types of Inventory**

1. Current Inventory

– current growing stock etc

- 2. <u>Recurrent or Continuous Inventory</u>
  - Inventory repeated at regular interval
  - Monitoring growth rate and other changes

## Planning and execution of Inventory



## Kinds of enumeration

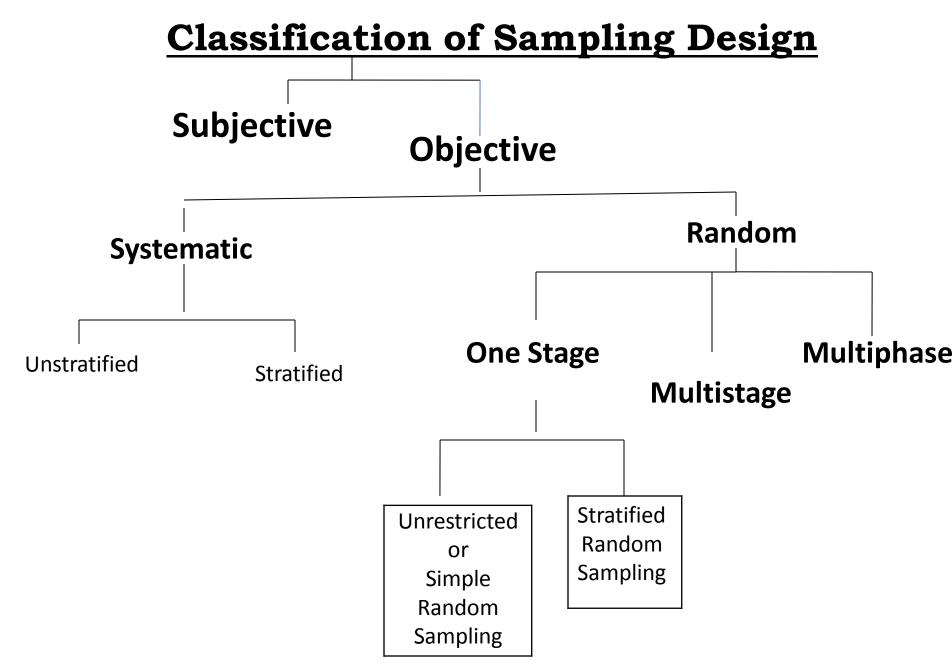
- 1. Total or Complete enumeration
  - Expensive & time consuming
  - Very small area of valuable and intensively managed forest
- 2. Partial or Sample enumeration
  - Enumeration only in a representative portion
  - Sample
    - part of population
    - May consist one or more sampling unit
  - Ratio of sample to whole population is called 'sampling fraction' or 'intensity of sampling'
    - Expressed as a percentage

### **Choice of kind of enumeration**

- Depends upon :
  - 1. Extent of area to be covered
  - 2. Variation in composition & density
  - Intensity of management & consequent accuracy required
  - 4. Resource of labour , time and funds available

### **Relative advantage of Sampling**

- 1. Reduced cost and saving of time
- 2. Relative accuracy- when planned, appropriate intensity, qualified personnel can be employed.
- 3. Knowledge of error- calculated and kept within limits by stat. methods
- 4. Greater scope- sophisticated instruments & highly skilled techniques



## **SAMPLING DESIGNS**

#### Guided by

- Objective of the inventory
- Desired precision
- Time and money available
- Topography & accessibility
- Availability of personnel and equipments
- Availability of satellite imageries, aerial photographs, and maps, data processing units.
- Results of previous survey

# **Types of sampling plots**

- 1. Temporary sampling plots
- 2. Permanent sampling plots

- **1. Temporary sampling plots:** 
  - Generally used for the enumeration surveys
  - Measurements carried out once only

### 2. Permanent sample plots

- can be used for:
  - Repeated measurements at regular interval
  - Used for preparation of yield tables.
  - To study the all stages of development of even aged crop
    - Including crop volume and increment.
  - To study the same type of crops in different localities.
  - To study the influence on crop increment of different methods of regeneration.

#### Size & Shape of sampling units

- 1. Size :
  - Compromise between maximum efficiency, cost and convenience
    - Small sampling units more efficient than larger ones
    - Large sampling units fewer sampling units , hence lesser time required for travel & hence lesser cost

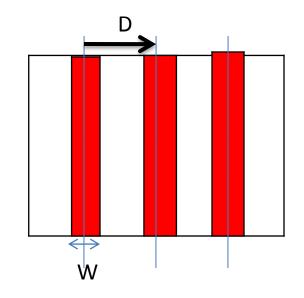
#### 2. Shape :

- a) Plots
  - Square, rectangular or circular
- b) Strips
  - Base line
  - Enumeration is done on the both side of central line

Intensity of sampling,

- I =( W /D) x 100
- W= width of strip
- D = distance between the central lines

of 2 adjacent strips



#### c) Topographical units

- Natural / artificial features form boundaries
- Used in hills
- Units first identified on maps then on ground
- Calculate area from the map

d) Clusters

- A group of smaller units
  - Cluster statistical unit
  - Small unit record unit

## **Sampling Intensity**

• Defined as:

(Area sampled/Total area) x 100

• In order to keep the sampling error less than 10%, following intensities have been recommended:

| Type of forest           | Percentage |
|--------------------------|------------|
| Tropical wet ever green  | 10         |
| Tropical moist deciduous | 2.5        |
| Sub-tropical pine forest | 5          |

## **Sampling Intensity**

• The percentage usually recommended for different terrains:-

| Terrain | Method                        | % of sampling                                            |
|---------|-------------------------------|----------------------------------------------------------|
| Plains  | Strip sampling<br>Linear plot | 5 to 10<br>2 to 5                                        |
| Hills   | Topographical<br>Units        | 20 to 25 if the area of the forest is more than 2000 ha. |

This is only a rough guide

## **Sampling Intensity**

- Circular plot method
  - Circular plot size 0.05 ha (radius 12.62 m)
  - For plains following table can be used

| <u>Net area of the</u><br><u>forest unit</u> | <b>Enumeration intensity</b> |
|----------------------------------------------|------------------------------|
| Up to 10 ha                                  | Total enumeration            |
| 11 to 50 ha                                  | Minimum of 30 circular plots |
| 51 ha and above                              | 30 to 100 circular plots     |

# **Sample**



- Part of population
- Representative of population
- May consist one or more sampling unit

### **Parameters and Statistic**

- Used to describe quantitative characteristic of population and sample
  - Statistical constants of population are called

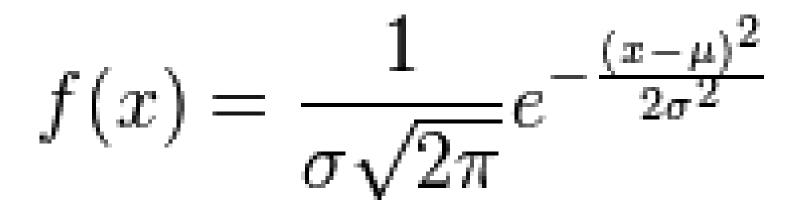
'Parameters'

Statistical measures calculated from the sample

observations are 'Statistics'

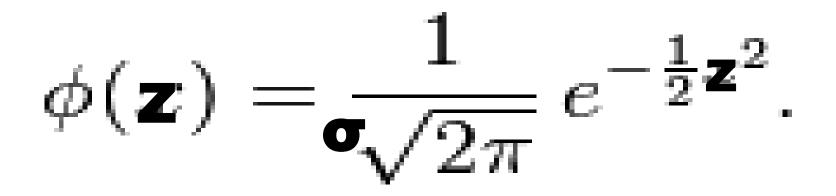
# **Variables**

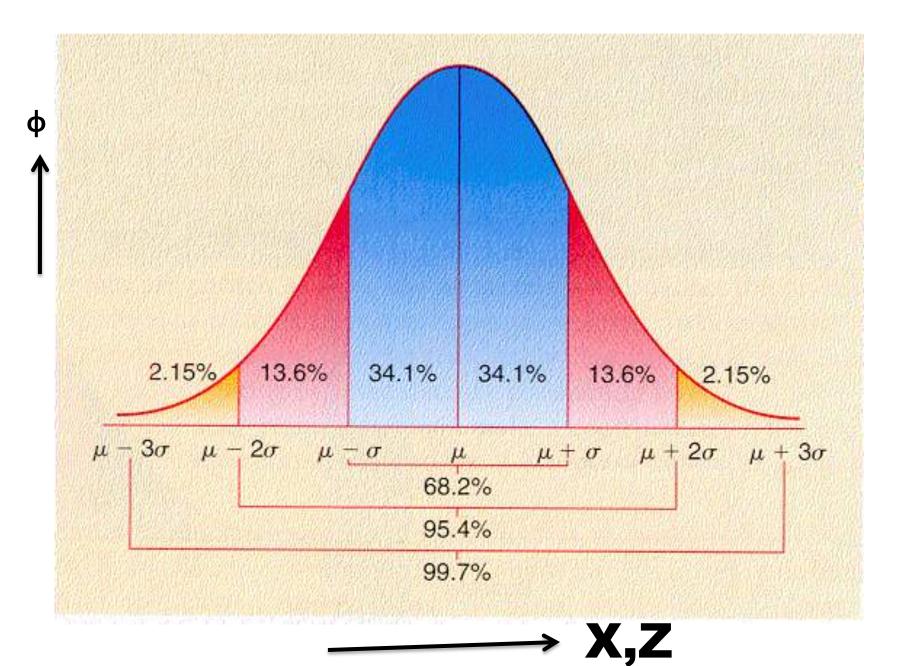
- Discreet
- Continuous
- Distribution ?
- Discreet
  - Binomial distribution
  - Poisson distribution
- Continuous
  - Normal



We can transform the original variate to

When  $x=\mu \rightarrow \text{Mean } Z=0$ 





### **Characteristics of Normal distribution**

- The curve is bell shaped and symmetrical about line x=  $\mu$
- Mean, Median and Mode of the distribution coincide
- Total area under graph = 1
- Probability of a continuous variable falling within  $x_1$  and  $x_2$  :  $P_1 P_2$

#### Method :

- Calculate  $Z_1 = (x_1 - \mu) / \sigma$   $Z_2 = (x_2 - \mu) / \sigma$ - Calculate  $P_1$  at  $Z_1$  and  $P_2$  at  $Z_2$ - Probability of a continuous variable falling within  $x_1$ and  $x_2$  :  $P_1(Z_1) - P_2(Z_2)$  Q: If  $\mu = 485$  and  $\sigma = 25$ ;

what is the probability that x < = 460 ?

Sol :  $Z = (x - \mu) / \sigma = (460 - 485) / 25 = -1$ P (x <= 460) = P (z <= -1) = 0.1587 (from table) Q : If  $\mu = 500$  and  $\sigma = 4.47$ 

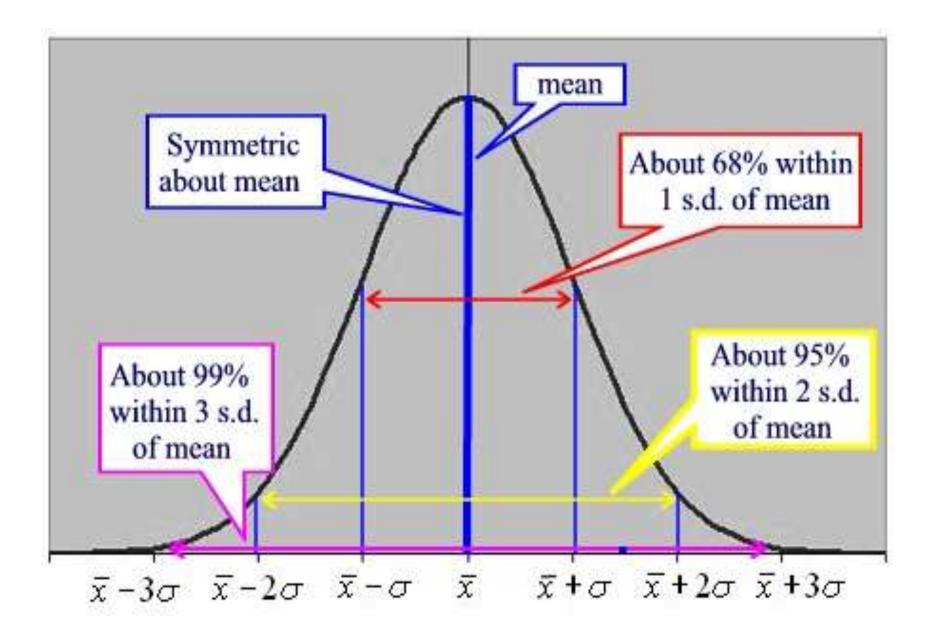
what is the probability that  $490 \le x \le 510$ ? Sol:  $Z_1 = (x_1 - \mu) / \sigma = (490 - 500) / 4.47$ = -2.24 $P_1(Z_1) = P_1(-2.24) = 0.01255$  (from table)  $Z_2 = (x_2 - \mu) / \sigma = (510 - 500) / 4.47$ = 2.24 $P_2(Z_2) = P_2(2.24) = 0.98745$  (from table)  $P(490 \le x \le 510) = P(-2.24 \le z \le 2.24)$  $= P_2 (2.24) - P_1 (-2.24)$ = 0.9749

#### • Problem :

A population is deemed to have a normal distribution of diameters defined by the estimated mean of 50 cm with a standard deviation (S) of 5 cm. Expected diameter distribution for a population of 900 stems per hectare ?

#### • Solution:-

| СМ            |                                                     | Probability | N, stems ha <sup>-1</sup> |
|---------------|-----------------------------------------------------|-------------|---------------------------|
| <40           | (d-2s)                                              | 0.0228      | 21                        |
| 40-45         | (d-2s) to (d-1s)                                    | 0.1359      | 122                       |
| 45- <b>50</b> | (d-1s) to (d)                                       | 0.3413      | 307                       |
| <b>50</b> -55 | (d) to (d+1s)                                       | 0.3413      | 307                       |
| 55-60         | (d+1s) to (d+2s)                                    | 0.1359      | 122                       |
| >60           | ( <d+2s)< td=""><td>0.0228</td><td>21</td></d+2s)<> | 0.0228      | 21                        |
|               |                                                     | Total       | 900                       |



#### Method :

- If probability is given, then finding out value of variable ?
  - Probability is 'P', find 'X'?
  - First, find 'Z' value of 'P' from table
  - Calculate 'X' from , Z = (X  $\mu$ ) /  $\sigma$

 $X = \sigma \cdot Z + \mu$ 

Q: If  $\mu = 100$  and  $\sigma = 15$ ;

what 'X' falls at the probability 95% ?

Sol : first, Z value at P = 0.95 is 1.64 (from table)

 $X = \sigma . Z + \mu$ X = (15 \* 1.64) + 100 = 125

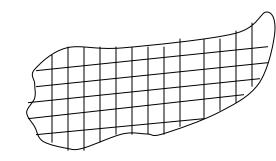
### Simple Random Sampling

- Every possible combination of n units should have an equal chance of being selected.
- Selection of one units does not effect selection of another unit.

#### How to do?

- Assign every unit a unique #
- Draw lots or generate random #
- Two cases possible
  - Sample without replacement
  - Sample with replacement.

- Practical example:
   250 acre forest
- **Object:** get volume/ acre of trees in dia more than 5" dbh over bark
- Sample size = 0.25 acre



- a) Make 1000 equal div. on map
- b) Assign no. 1 to 999 to each plot .000 corresponds to 1000

- c) Draw lot, or generate random no. Measure the selected plot for required value (sample without replacement)
- d) Now it becomes a population with no. of units in population = N = 1000
- e) If 25 quarter acre plots are taken for sampling at random
  - Each value of one plot is one unit,
  - After selecting these 25 units; the sample size is now n = 25.
  - We can get the standard error for simple random sampling

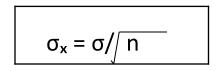
# **Sample theory**

• Distribution of sample mean is "Normal distribution" i.e.  $Z_i = (X_i - \mu_x) / \sigma_x$ 

Where,  $\sigma_x$  = Standard deviation of sample mean or std error

= 
$$\sigma / \sqrt{n}$$
,  $\sigma$  = population std deviation;

Finally, our aim is , sample mean = population mean



• As 'n' increases,

- Variability among sample mean decreases

**Q:** Population mean,  $\mu = 500$ ,  $\sigma = 10$ 

What is the probability that out of 5 sample, all measurments will be between 490 & 510 ?

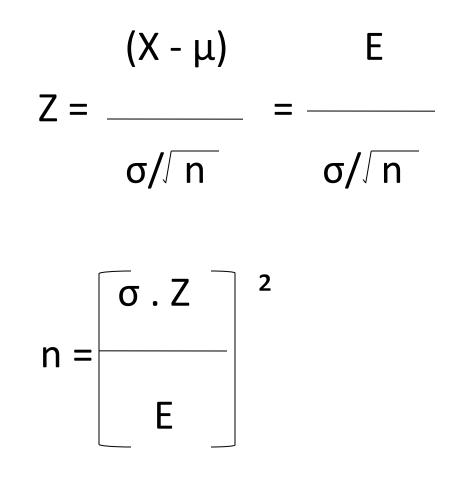
Sol: 
$$Z_1 = (490-500) = -2.24$$
;  $P_1(-2.24) = 0.01255$   
 $10/\sqrt{5}$   
 $Z_2 = (510-500) = 2.24$ ;  $P_2(2.24) = 0.98745$   
 $10/\sqrt{5}$ 

 $P(490 \le X \le 510) = 0.98745 - 0.01255 = 0.9749$ 

# **Sampling Errors**

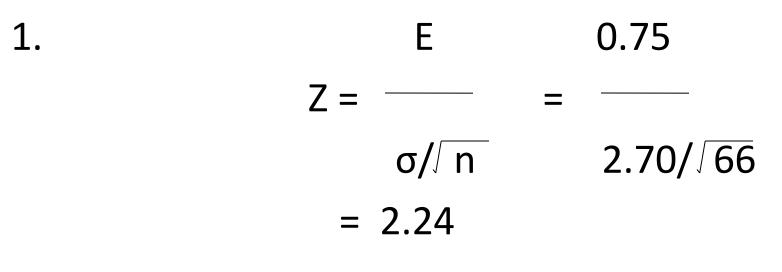
- Occur due to enumeration in samples and result applied to population
- 'Error of estimate' is :
  - Difference between 'estimate' and the ' population parameter ( true value)'

E = (M - Y) Where, E = error of estimate, M = population mean Y = sample mean



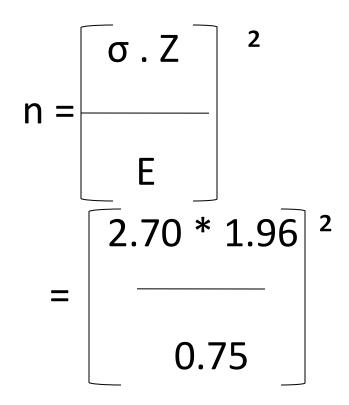
**Q:** The SD of a population is 2.70 cms. Find probability that in a sample size of 66 the sample mean will differ from the population mean by 0.75 or more.

**Q:** The SD of a population is 2.70 cms. Find the sample size if it is 95% probable that sample mean differs from the population mean by 0.75 or less.



P (2.24) = 0.98745

### Probability that sample mean will differ from the population mean by 0.75 or more = 1 - 0.98745= 0.01255



= 49.78 or 50

2.

- In forestry, Population parameter are not known
  - Hence it is not possible to know true value of sampling error in forest inventory
  - Alternatively, sample data are used to obtain a measure of sampling error which must fulfill the condition of consistency

- Since the estimate of population parameter is based on sample statistics – it can't be a single figure but a range
  - Forest inventory estimates are expressed in terms of a range with an associated probability
  - **Range :** within which true value is expected to lie at a given probability
    - known as "Confidence Interval"
    - values which define limit of this interval are called "Confidence Limits"

#### For Large Sample (n > 30):

Generally it is true that most of forest parameter follow **Normal Distribution**.

- i. Confidence Interval for 95% prob. is :
  - = Sample mean ± 1.96 (Standard error of estimate)
- ii. Confidence Interval for 98% prob. is :
  - = Sample mean ± 2.33 (Standard error of estimate)
- iii. Confidence Interval for 99% prob. is :
  - = Sample mean ± 2.58 (Standard error of estimate)

$$(X - \overline{x}) \qquad E$$

$$Z = ----- = ----$$

$$s_y / \sqrt{n} \qquad s_y / \sqrt{n}$$
Or, 
$$s_y / \sqrt{n} = E / Z$$

coefficient of variation, CV = (s  $_y/\bar{x}$ ) \* 100

# <u>Problem</u>

- Q: The mean girth of a random sample of 60 trees was found to be 145 with SD of 45.Construct 95% confidence interval for true mean.Assume sample size large enough to be normal population.
  - What sample size required for mean to be within 5 units of the true mean ?

Sol 1: n = 60, mean girth,  $g_{\gamma} = 145$ ; SD = 45  $CI = g_{\gamma} \pm 1.96 (45 / \sqrt{60})$   $= 145 \pm 15$ = 130 and 160

Sol 2: E = 5;

n =  $(s_y. Z / E)^2$ = (45 \* 1.96 / 5)<sup>2</sup> = 311 samples

### **Biometry Exercise**

|             |                    |        | ~                    |
|-------------|--------------------|--------|----------------------|
| PLOT NUMBER | LEAST VOLUME ( V ) | Ũ - V  | (Ũ - V) <sup>2</sup> |
| PLOT# 1     | 24.72              | -0.96  | 0.92                 |
| PLOT# 2     | 21.65              | 2.11   | 4.46                 |
| PLOT# 3     | 27.25              | -3.49  | 12.17                |
| PLOT# 4     | 43.92              | -20.16 | 406.39               |
| PLOT# 5     | 40.92              | -17.16 | 294.43               |
| PLOT# 6     | 31.69              | -7.93  | 62.87                |
| PLOT# 7     | 14.82              | 8.94   | 79.94                |
| PLOT# 8     | 14.37              | 9.39   | 88.19                |
| PLOT# 9     | 19.85              | 3.91   | 15.30                |
| PLOT# 10    | 26.15              | -2.39  | 5.71                 |
| PLOT# 11    | 21.18              | 2.58   | 6.66                 |
| PLOT# 12    | 9.58               | 14.18  | 201.10               |
| PLOT# 13    | 19.5               | 4.26   | 18.16                |
| PLOT# 14    | 17.26              | 6.50   | 42.26                |
| PLOT# 15    | 17.26              | 6.50   | 42.26                |

| PLOT# 16 | 19.37 | 4.39   | 19.28  |
|----------|-------|--------|--------|
| PLOT# 17 | 16.58 | 7.18   | 51.57  |
| PLOT# 18 | 16.44 | 7.32   | 53.60  |
| PLOT# 19 | 18.9  | 4.86   | 23.63  |
| PLOT# 20 | 25.49 | -1.73  | 2.99   |
| PLOT# 21 | 35.31 | -11.55 | 133.38 |
| PLOT# 22 | 27.19 | -3.43  | 11.76  |
| PLOT# 23 | 28.74 | -4.98  | 24.79  |
| PLOT# 24 | 33.19 | -9.43  | 88.91  |
| PLOT# 25 | 16.01 | 7.75   | 60.08  |
| PLOT# 26 | 18.3  | 5.46   | 29.82  |
| PLOT# 27 | 43.27 | -19.51 | 380.60 |
|          |       |        |        |

| PLOT# 28( Gr 12) | 21.72  | 2.05   | 4.19    |
|------------------|--------|--------|---------|
| PLOT# 29( Gr 12) | 13.85  | 9.92   | 98.32   |
| PLOT# 30( Gr 12) | 12.06  | 11.70  | 136.91  |
| PLOT# 31( Gr 13) | 17.13  | 6.63   | 43.99   |
| PLOT# 32( Gr 13) | 20.17  | 3.59   | 12.87   |
| PLOT# 33( Gr 13) | 24.55  | -0.78  | 0.62    |
| PLOT# 34         | 19.85  | 3.91   | 15.30   |
| PLOT# 35         | 25.18  | -1.42  | 2.01    |
| PLOT# 36         | 22.24  | 1.52   | 2.31    |
| PLOT# 37         | 17.71  | 6.05   | 36.61   |
| PLOT# 38         | 42.32  | -18.56 | 344.44  |
| PLOT# 39         | 37.07  | -13.31 | 177.13  |
| PLOT# 40         | 27.69  | -3.93  | 15.44   |
| TOTAL            | 950.44 |        | 3051.36 |

| MEAN(Ũ)            | 23.76 |      |
|--------------------|-------|------|
| STANDARD DEVIATION | 8.845 |      |
| ERROR %            | 5.00  | 6.00 |
|                    |       |      |
|                    |       |      |
| NO OF PLOTS        | 213   | 148  |

### For Small Sample:

- Sample distribution not normal
- But fundamental assumption that the parent population follows normal distribution
- For such distributions **student's 't'** can be calculated for C.I.

- In order to estimate 't', two parameter are needed
  - 1. degrees of freedom
  - 2. degree of certainty (probability level)

Then,

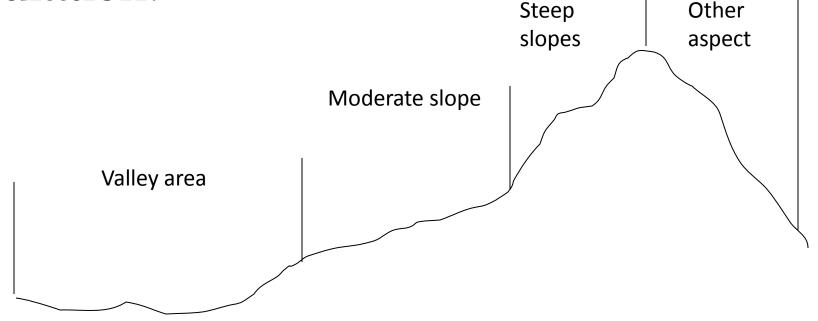
C.I. = Estimate ± t .(S.E.)  
C.I. = 
$$\mathbf{x} \pm \mathbf{t}_{0.05} \cdot \mathbf{s}_{\mathbf{x}}$$
 (for 95% confidence interval)  
C.I. =  $\mathbf{x} \pm \mathbf{t}_{0.01} \cdot \mathbf{s}_{\mathbf{x}}$  (for 99% confidence interval)

- If volume measured in 25 plots of the previous example, we can get
- 1. Standard error of mean volume
- 2. Read 't' against 24 df and 95 %
- 3. Then confidence interval per acre area basis can be calculated
- 4. C.I. = v + t (Standard error of mean volume)

### Stratified Random Sampling:

- In this groups are made based on similarity of characteristics of units.

- Variability within group should be less than the variability through out the population.



Q.Total area of a plantation is 37 ha. Measurements of volumes have been taken in 12 sample plots of 0.02 ha area each. Data gathered is as follows:

 Plot
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

 Vol.
 4.7
 4.4
 3.8
 5.1
 4
 4.6
 4
 4.6
 4.8
 6.1
 5.6
 4.3

 (in cum)
 (in cum)

Find out confidence limit for total volume with 95% probability. Assume that population and sample distribution is normal.