Field Exercise

"Biometry"

dt: 17/10/2015 Timli, Dehradun

Objectives

- 1. Prepare **N-D curve** for each compartment
- 2. Compare the **Volume** by 4 different methods
- 3. Finding out **Number of sampling plots** required for simple random sampling with given error and confidence limit

• Groups :

Total no – 12

• 8 compartments – total area : 1106 ha

Steps for the field....

- 1. Lay sample plot
 - 1. Each group 3, Total sample plot 36
 - 2. Size : 0.1 ha
- 2. Measure dia of all the trees
- 3. Measure height of few biggest trees in each dia class
- 4. Prepare dia frequency table

S. n.	Dia class (in cm)	No. of trees	Average height
1	2	3	4
1	10-20		
2	20-30		
3	30-40		
4			

- 5. Prepare N-D curve for each compartment (no.- 6)
 - <u>(Obj -1)</u>

Pool data of each group

- 6. Calculate Crop Diameter
 - Get Mean Basal Area (MBA)

Steps:

1. Tabulate field data in dia-classes

Dia class	# of trees	Basal area of mid pt.	Total basal area in dia class
10-20	n1	g1	n1.g1
20-30	n2	g2	n2. g2
30-40	n3	g3	n3. g3
40-50	n4	g4	n4. g4
50-60	n5	g5	n5. g5
ith	ni	gi	ni. gi
Total	Σni		∑ ni.gi

M.B.A. = \sum ni gi / \sum ni,

M.B.A. =

n1+n2+n3+.....ni

.

- 6. Plot height diameter curve
 - Get Site Quality
- 7. Get Crop Height
 - Read height against crop diameter
- 8. We now have :
 - i. Site quality
 - ii. Crop diameter
 - iii. Crop height

- 9. Volume calculation :
 - Calculate volume for each sample plot
 - 4 methods
 - i. By volume table
 - ii. By regression equation
 - iii. By yield table
 - iv. By wedge prism

i. <u>By Volume table :</u> (page 86, yield table)

S. n.	Dia class (in cm)	Mid dia (in cm)	No. of trees	Volume per tree in dia class	Total volume of dia class
1	2	3	4	5	6 (= col 4 X col 5)
1	10-20	15	n ₁	V ₁	V ₁ = n ₁ . v ₁
2	20-30	25	n ₂	V ₂	V ₂ = n ₂ . v ₂
3	30-40	35	n ₃	V ₃	V ₃ = n ₃ . v ₃
4					

Total volume = sum of all dia class volumes $V = V_1 + V_2 + V_3 + \dots$

ii. By regression equation:

 $V = 0.03085 - 0.77794 D + 8.42051 D^2 + 5.91067 D^3$

Where,

D = mean dia in dia class, in m.

 $V = volume per tree, in m^3$

Total volume of each dia class = (volume per tree) x (no of trees)

Total volume = sum of all dia class volumes

iii. By Yield table :

- Read total BA from yield table for calculated crop
 diameter for site quality of compartment
 Calculated BA
- Density of crop = ——

yield table BA

Read total main crop volume (stem + small wood) for
 crop dia from yield table (column 10)

Actual volume = (volume from yield table) x (density)

iv. By Wedge Prism:

- Take reading at any five points each with both WP
- Calculate BA per ha
 - Full tallies then counted as -1
 - Half tallies counted as 0.5
 - Total tallies multiplied with BAF to get BA per Ha
- Get volume per ha
 - (BA per ha) X (crop height)

10. Take the least of 3 (Sr no.- 1, 2 & 3)volumes calculated

Compare it with volume by Wedge prism
 (Obj -2)

11. We get volume for each sample plot $(v_i; i=1,2,...,40)$

- get μ = mean volume

12. find out standard deviation ' σ '

$$\sigma = \sqrt{\Sigma (v_i - \mu)^2 / (n - 1)}$$

Where, n = 40

10. Find out number of plots required for 2% error

and 95% confidence limit

$$n = \begin{bmatrix} \sigma \cdot Z \\ - & z$$

(Obj -3)

where, C.V. = $(\sigma / \mu) \times 100$ Z = 1.96

11. Generate random distribution of these many sample plots in GIS lab

END